

Swarm DISC Weekly Report 2019/04: 2019/01/21 - 2019/01/27

Abstract	:	This is the Swarm Data Innovation and Science Cluster (Swarm DISC) Weekly report on Swarm products quality, covering the period from 21 January to 27 January 2019.				
Doc. No	:	SW-RP-SER-GS-010				
Author	:		Approval		:	
		Martyna Romanowska and Filomena Catapano on behalf of Swarm DISC Team			Jerome Bouffard ESA – EOP/GMQ	
Distribution	:	ESA/ESRIN EOP-GMQ ESA/ESRIN EOP-GM Swarm MM Swarm DISC Management Team Swarm DISC subcontractors		ESA/ESTEC Swarm PLSO ESA/ESOC Swarm FOS		

© Serco S.p.a., Italy, 2019. Proprietary and intellectual rights of Serco S.p.a., Italy are involved in the subject-matter of this material and all manufacturing, reproduction, use, disclosure, and sales rights pertaining to such subject-matter are expressly reserved. This material is submitted for a specific purpose as agreed in writing, and the recipient by accepting this material agrees that this material will not be used, copied, or reproduced in whole or in part nor its contents (or any part thereof) revealed in any manner or to any third party, except own staff, to meet the purpose for which it was submitted and subject to the terms of the written agreement.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

TABLE OF CONTENTS

TA	BLE OF CO	NTENTS	2
1.	INTRODU	ICTION	5
1.1	Currer	t Operational configuration of monitored data:	6
1.2	Refere	nce documents	6
2.	SUMMAR	RY OF THE OBSERVATIONS	8
2.1		es in the general status of Swarm instruments and Level 1B products quality	
2.2		or operational processor updates	
2.3		/ Working Group and Cal/Val Coordination	
2.4		ary of observations for 2019, Week 4 (21/01 - 27/01)	
2		QUALITY CONTROL	
3. 3.1		QUALITY CONTROL	
3.2		and Attitude Products	
		osition Statistics	
	3.2.1	Swarm A	
	3.2.1.1	Swarm B	
	3.2.1.2	Swarm C	
	0	titude observations	
	3.2.2.1	Swarm A	
	3.2.2.2	Swarm B	
	3.2.2.3	Swarm C	
3.3	Magne	etic Products	
	5	-M-ASM anomaly	
	3.3.1.1		
	3.3.1.2	Swarm A	20
	3.3.1.3	Swarm B	21
	3.3.1.4	Swarm C	21
	3.3.2 A	SM Instrument parameters: quartz frequency and ASM temperature (ASMAVEC_0)	21
	3.3.3 V	-M Instrument parameters: VFM temperatures (MAG_CA)	21
	3.3.4 M	agnetic time series visual inspection	22
	3.3.4.1	Swarm A	
	3.3.4.2	Swarm B	
	3.3.4.3	Swarm C	
		C A and C magnetic correlation	
		C A and C magnetic difference	
		NEC vs Chaos5 model residuals	
		Swarm A	
	3.3.7.2	Swarm B	
	3.3.7.3	Swarm C	
		econd derivative of B _{NEC} and B _{VFM}	
	3.3.8.1	Swarm A	
		Swarm B	
	3.3.8.3	Swarm C	36
4.	ON-DEM	AND ANALYSIS	37

Page 2 of 38

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

This page intentionally left blank.

Page 3 of 38

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

AMENDMENT POLICY

This document shall be amended by releasing a new edition of the document in its entirety. The Amendment Record Sheet below records the history and issue status of this document.

AMENDMENT RECORD SHEET

ISSUE	DATE	REASON
1.0	06 May 2019	First issue

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

1. Introduction

This document refers to the activities carried out in the framework of the Sensor Performance, Products and Algorithms (SPPA) Office [RD.1], and as such, it reports on work related to:

- Algorithms and Processors Development, Maintenance and Evolution: these include all algorithm and software evolution and maintenance aspects for the different components, for both the Operational processors (OP) and Prototypes processors (PP) of L1 and L2 chains.
- Performance Assessment: these include all Quality Control activities (on-line and offline, systematic or on-demand), for the applicable product levels.
- System Calibration: these include the activities related to calibration, from sensor to system level. They also include aspects like cross calibration and handling of external calibration sources.
- Product validation: these include definition and maintenance of product validation plans.
- End-to-end Sensor Dataset Performance: these include activities related to the organisation and coordination of Quality Working Groups and all aspects of the Experimental platform. It also covers the product baseline, coordination and handling of external communities, and all aspects of APDF (Archive and Processing Data Facility) handling (both for the operational processors and for the prototypes).

This weekly report constitutes a work in progress throughout the mission lifetime, and new parts and complements will be added while the consolidation of knowledge on Swarm data and instruments will progress.

Section 2.1 always gives an overview of the general quality status of the mission instruments and products, while the main observations of the week are summarized in Section 2.4.

The document also includes information on data quality for the three Swarm spacecraft, inferred from automated HTML quality reports, which are produced on daily basis for each product. Please contact the Swarm DISC team if interested in accessing the reports via web or FTP (all details about interfaces and folder structure available on [RD.2]). Such quality reports represent the core of the Routine Quality Control (Chapter 3). A description of the implemented quality checks is given in [RD.3], and references therein.

Basing on specific findings of the routine quality control, or on-demand from other entities (i.e. Swarm Payload Data Ground Segment (PDGS), Flight Operation Segment (FOS), Mission Management, Post-Launch Support Office (PLSO), Expert Support Laboratories (ESL), Quality Working Groups (QWG), and user community), anomalies can be triggered. Preliminary characterisations and investigations of such anomalies are given in Chapter 4.The anomalies documented in the Weekly Reports are tracked in the following way:

1. If triggered by ESA Eohelp or within the Service: DISC action and ticketing system (<u>http://requests-sppa.serco.it/RT3/index.html</u>, for authorised personnel only).

2. If triggered by Swarm Disc team or other entities:

2a. if the observation/analysis leads to an anomaly to be addressed to the processor provider (GMV): SPR on EO ARTS (<u>https://arts.eo.esa.int</u>, for authorised personnel only), <u>SWL1L2DB</u> project;

2b. if the observation/analysis does not lead to an anomaly or the investigation shall be escalated to other entities (PLSO/industry, ESL, and PDGS): Action tracked on EO ARTS, SW-IDEAS project, then addressed to the proper tracking system if needed (e.g. JIRA for ESLs, SW-CP-AR project on EO ARTS for PDGS).

Information on Level 1B Swarm products can be found in [RD.4].

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

1.1 Current Operational configuration of monitored data:

- Processors Version: L1BOP v3.20p1, L2-Cat2 v01.18p2.
- L0 input products baseline: 02
- L1B baseline: MAGNET and PLASMA 05, ORBATT and ACCELE 04 (for definitions and description of the data baseline concept see https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/swarm/data-access/product-baseline-definition)
- Level 2 Cat 2 baseline: EEF 01, IBI, FAC and TEC 03
- Input auxiliary files baseline: S/C A CCDB 0021 (13/12/2018), S/C B CCDB 0022 (02/01/2019), S/C C CCDB 0022 (20/12/2018), ADF 0101
- MPPF-CVQ v.03.07 (20/12/2018)

1.2 Reference documents

The following is a list of documents with a direct bearing on the content of this report. Where referenced in the text, these are identified as RD.n, where 'n' is the number in the list below:

- [RD.1] Sensor Performance, Products and Algorithms (SPPA), PGSI-GSOP-EOPG-TN-05-0025. Version 2.3.
- [RD.2] Swarm PDGS External DMC Interface Control Document, SW-ID-DS-GS-0001, Issue 3.2.
- [RD.3] Swarm MPPF-CVQ Monitoring Baseline Document, ST-ESA-SWARM-MBD-0001, Issue 1.7.
- [RD.4] Swarm Level 1B Product Definition, SW-RS-DSC-SY-0007, Issue 5.13.
- [RD.5] Swarm IDEAS Configuration Management Plan, IDEAS-SER-MGT-PLN-1081 v0.14.
- [RD.6] Swarm Quality Control Project Plan, IDEAS-SER-MGT-PLN-1071
- [RD.7] SW_L1BOP_status_20141124_MoM
- [RD.8] Planned Updates for Level 1b, SW-PL-DTU-GS-008, Rev: 1dC.
- [RD.9] IDEAS+ Swarm Weekly Report: 25/08/2014 31/08/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140825_20140831.pdf (ref. for SWL1L2DB-9)
- [RD.10] IDEAS+ Swarm Weekly Report: 29/09/2014 05/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140929_20141005.pdf (ref. for SW-IDEAS-34)
- [RD.11] IDEAS+ Swarm Weekly Report: 06/10/2014 12/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20141006_20141012.pdf (ref. for SW-IDEAS-36)
- [RD.12] IDEAS+ Swarm Weekly Report: 20/10/2014 26/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20141020_20141026.pdf (ref. for SW-IDEAS-40, GPS sync loss)
- [RD.13] IDEAS+ Swarm Weekly Report: 15/09/2014 21/09/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140915_20140921.pdf (ref. for SW-IDEAS-27)
- [RD.14] Swarm L1B 03.15 Validation Report, OSMV-OPMT-SRCO-RP-15-3385, Issue 1.3.
- [RD.15] IDEAS+ Swarm Weekly Report: 23/03/2015 29/03/2015, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_201513_20150323_20150329.pdf.
- [RD.16] SWARM Weekly Operations Report #76, SW-RP-ESC-FS-6172

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

[RD.17] Olsen, N., H. Luhr, C.C. Finlay, T.J. Sabaka, I. Michaelis, J. Rauberg and L. Tøffner-Clausen, The CHAOS-4 geomagnetic field model, Geophys. J. Int. 197, 815–827, 2014

- [RD.18] IDEAS+-SER-IPF-PLN-2272, Swarm Level 1B Operational Processor Verification Plan, IDEAS+-SER-IPF-PLN-2272_L1BOP_316_v1.5_final.pdf
- [RD.19] SW-RP-SER-GS-010_SPPA_SwarmWeeklyReport_201641_20161010_20161016.pdf

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

2. Summary of the observations

2.1 Changes in the general status of Swarm instruments and Level 1B products quality

- The ASM (Absolute Scalar Magnetometer) instrument on board Swarm Bravo was commanded in burst mode from 21 to 28 January 2019. Thus, the magnetic field intensity derived from the ASM and stored in MAGB_LR_1B and MAGB_CA_1B products is set to zero from 21 January 2019, at 07:36 UTC to 28 January 2019 at 06:54:23 UTC.
- The EFI TII gain map calibration was performed on Swarm-A and Swarm-C on 27/01/2019, producing small time gaps in the corresponding EFIx_LP_1B products.

2.2 Plan for operational processor updates

L1BOP: The next delivery of the L1BOP v03.21 (delivery date end February 2019) will contain only the porting of this processor to a more upgraded operational system, i.e., Red Hat Enterprise Linux 7.5. No evolutions of the L1B processor algorithm will be included in this delivery.

L2 Cat-2: The next delivery of the L2 Cat-2 OP v01.19 (delivery date Mid-March 2019) will contain only the porting of this processor to a more upgraded operational system, i.e., Red Hat Enterprise Linux 7.5. No evolutions of the L2 Cat-2 processor algorithms will be included in this delivery.

2.3 Quality Working Group and Cal/Val Coordination

The 8th Swarm Data Quality Workshop (DQW#8) held in ESA ESRIN from Monday 08th October (afternoon) to Friday 12th October 2018 (morning). The main objectives of the workshop were to:

- Provide an overview of Swarm Mission status to the user Community
- Update the data quality status from Magnetic, Electric, GPSR and accelerometer measurements
- Discuss new Swarm-based Scientific results

Besides the usual Cal/Val topics, this Swarm DQW#8 has also allowed to address new technical, scientific and strategic challenges related to:

- Swarm-based Multi-disciplinary applications
- Swarm-based Data processing virtual environments
- Swarm-based Machine Learning methods
- Multi-mission synergies (e.g. with CryoSat, Goce, e-POP, CSES etc.)

The Swarm DQW#8 was an occasion to discuss potential synergetic benefits obtained through collaboration initiatives with ESA's partner agencies and other sensor systems. A dedicated session on Swarm / Chinese CSES mission synergies were organized for the first time to further discuss and structure future joint Cal-Val activities and scientific cooperation.

A complete summary of the recommendations based on the contributions from Swarm DQW#8 sessions can be found at (<u>PDF version</u>).

Doc. no: SW-RP-SER-GS-010, Rev: 1

DISC

2.4 Summary of observations for 2019, Week 4 (21/01 - 27/01)

During the monitored week the following events have been found and investigated:

- The ASM instrument on Swarm-B was commanded to Burst Mode for the entire week, starting from 21/01/2019 07:36:30 to 28/01/2019 06:54:23.
- The re-occurrence of GPSR data lost anomaly on Swarm A from 12:23:22 till 12:23:34 on day 21/01/2019 afeected the L1A and L1B magnetic data.
- A data gap in VC4 dump occurred from 06:11:03 till 09:41:29 on day 26/01/2019 on Swarm A. It affects the L0, L1A and L1B GPS data, and magnetic HK and STR data.
- A re-occurrence of GPSR data lost anomaly is observed from 05:50:11 till 05:50:22 on day 23/01/2019 and from 06:54:19 till 06:54:30 on day 24/01/2019 on Swarm B. It affects the L1A and L1B magnetic data.
- A data gap in VC4 dump occurred from 11:54:26 till 11:54:28 on day 21/01/2019 on Swarm A. It affects the L0, L1A and L1B GPS and magnetic data. On SC A, on days 21-27/01/2019, the mean and max values of the ASM-VFM differences are out of threshold (above 0,3 nT and above 1nT), due to discrepancy between ASM and VFM for those days.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

3. Routine Quality control

3.1 Gaps analysis

- On SC A, time gaps appeared in L1A magnetic data from 12:23:22 till 12:23:34 on day 21/01/2019. It affected L1B magnetic data. It is caused by re-occurrence of GPSR data lost anomaly.
- Time gap found in HK_ANOM_0_ from 11:35:12 till 11:35:16 on day 24/01/2019. Other products are not affected.
- Severl time gaps found in HK_ANOM_0_ from 12:32:11 till 12:33:09 on day 25/01/2019. Other products are not affected.
- Several time gaps found in STRANOM_0_ between 08:18:16 and 09:41:27; and in GPSAOBS_0_ and VFMANOM_0_ from 08:08:52 till 09:41:30. Also, several time gaps found in ASMAVEC_0_ and HK_ANOM_0_ from 06:11:03 till 09:41:29 on day 26/01/2019. These gaps have affectedGPS, magnetic and STR L1A and L1B products and are due to the data gap in VC4 dump.
- On SC B, time gaps appeared in L1A magnetic data from 05:50:11 till 05:50:22 on day 23/01/2019. It affected also the L1B magnetic data and it is caused by re-occurrence of GPSR data lost anomaly.
- On SC B, time gaps appeared in L1A magnetic data from 06:54:19 till 06:54:30 on day 24/01/2019. It affected also the L1B magnetic data and it is caused by re-occurrence of GPSR data lost anomaly.
- Several time gaps found in HK_BNOM_0_ from 07:52:03 till 07:54:11 on day 25/01/2019. Other products are not affected.
- Time gap found in GPSCNAV_0_, GPSCOBS_0_ and VFMCNOM_0_ from 11:54:26 till 11:54:28 on day 21/01/2019. The gap has affected GPS and magnetic L1A and L1B data and is due to the data gap in VC4 dump.
- Time gaps found in HK_CNOM_0_ from 09:26:55 till 09:27:44 on day 25/01/2019. Other products are not affected.

3.2 **Orbit and Attitude Products**

In Table 3-1 are listed events that have to be reported.

Table 3-1: List of events related to attitude and orbit products to be reported in the monitoring for 2019, Week 4: 21/01 - 27/01.

Observation ID	Description	Affected parameter	Sect. of Obs. Description	Sect. of Obs. Analysis

The relevant parameters that have been monitored are:

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 11 of 38

- Position difference between calculated Medium Accuracy orbits (MODx_SC_1B) and on-board solution (GPSxNAV_0). Threshold values for such differences have not been assessed yet: we have just monitored the average values and maximum variations around the week. They are reported in tables in the sections below. In addition, some example plots are given from the HTML daily reports. For the time being we evaluated an anomaly should be raised if one (or more) of the following conditions occurs:
 - The average difference on a given day exceeds the position accuracy requirement for the mission (1.5 m),
 - The variability around the average is quite high: standard deviation threshold has been arbitrarily chosen to be twice the position accuracy requirement for the mission (2-sigma = 3 m).
 - At least 4-5 spikes are observed on a given day, exceeding +/- 50 m.
- Visual inspection of Star Tracker characterisation flags (STRxATT_1B)
- Deviation of the quaternion norm from unity (deviation threshold = $+/-10^{-9}$)
- Visual inspection of Euler Angles derived from quaternions.

3.2.1 Position Statistics

In Table 3-2, one can see the statistics of the differences between MOD and on-board solution positions for S/C A, B and C respectively. In the third column the maximum differences (maximum negative and maximum positive) are reported. The standard deviation is in the fourth column. Maxima, minima and standard deviations usually refer to the Z component that is often the most disturbed; in case another component is most affected, it will be specified in parentheses. Figure 3-1 shows a cumulative trend of the maximum daily standard deviation for the past 30 days of operations of the MOD-NAV difference, while Figure 3-2 shows the daily maximum difference, in absolute value, of the MOD-NAV difference, always for the past 30 days of operations.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

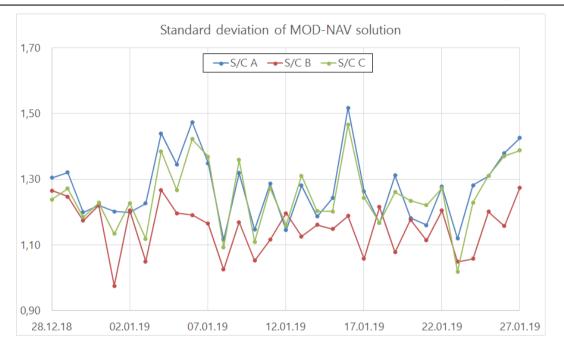
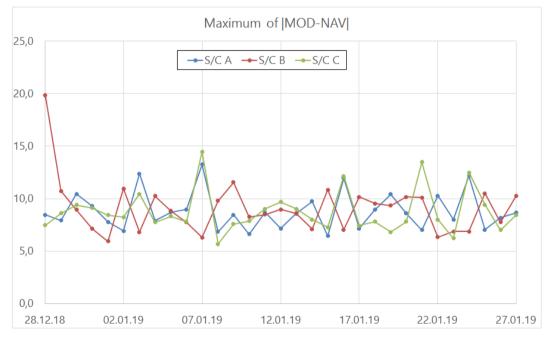

Page 12 of 38

Table 3-2: Swarm A, B and C, difference between MOD and on-board solution positions. If not specified maximum difference and standard deviation refers to the Z-axis.


		Swarm	A, 21/01 - 27/0	1, Position difference			
Day	Average difference (m)	Maximum difference (m)		-			Notes
21/01	0,08	-5,9	7	1,16			
22/01	0,16	-10,3	8,6	1,28			
23/01	0,06	-7,7	8	1,12			
24/01	0,04	-12,2	9,5	1,28			
25/01	0,11	-7	7	1,31			
26/01	0,11	-7,2	8,2	1,38			
27/01	0,2	-8,6	7,2 (X)	1,43			
		Swarm	B, 21/01 - 27/0	1, Position difference			
Day	Average difference (m)	Maximum d	ifference (m)	Standard deviation (m)	Notes		
21/01	0,11	-6,6	10,1	1,11			
22/01	0,07	-6,3	6,2	1,2			
23/01	0,11	-6,9	6,3	1,05			
24/01	0,08	-5,6	6,9	1,06			
25/01	0,1	-10,5	6,8	1,2			
26/01	0,09	-7,7	6,4 (X)	1,16			
27/01	0,12	-10,3	8,2	1,27			
		Swarm	C, 21/01 - 27/0	1, Position difference			
Day	Average difference (m)	Maximum difference (m)		Standard deviation (m)	Notes		
21/01	0,12	-13,5 (X)	10,5	1,22			
22/01	0,14	-8	7,5	1,27			
23/01	0,1	-5,8	6,2	1,02			
24/01	0,07	-12,5	5,5	1,23			
25/01	0,11	-5,8	9,4	1,31			
26/01	0,16	-6,8 7		1,37			
27/01	0,17	-7,9	8,4	1,39			

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Figure 3-1: Plot of the standard deviation of the difference between MOD and NAV solutions for all satellites. Plot covers last month of operation.

Figure 3-2: Plot of the maximum difference of the absolute value of the difference between MOD and NAV solutions for all satellites. Plot covers last month of operation.

Page 13 of 38

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 14 of 38

3.2.1.1 Swarm A

Below is presented plot of MOD-NAV differences for S/C A, taken at the beginning of the week (21.01, Figure 3-3). From top to bottom, the plots show of MOD-NAV differences in ITFR reference frame: on X, Y and Z-axis respectively, differences are given in [m].

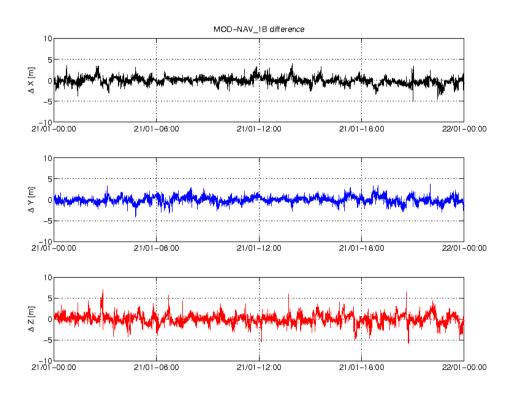


Figure 3-3: Difference MOD-GPSNAV, S/C A, 21.01. From top to bottom: X, Y and Z-axis

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 15 of 38

3.2.1.2 Swarm B

Below is presented plot of MOD-NAV differences for S/C B, taken at the beginning of the week (21.01, Figure 3-4). From top to bottom, the plots show of MOD-NAV differences in ITFR reference frame: on X, Y and Z-axis respectively, differences are given in [m].

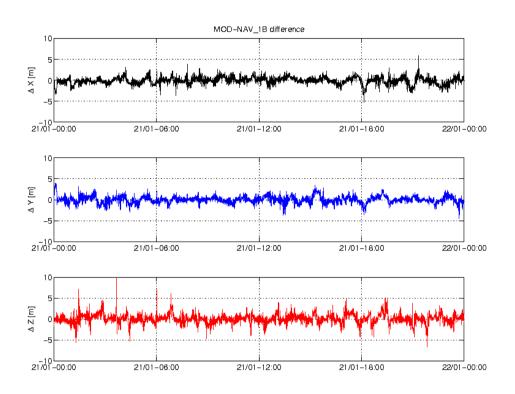


Figure 3-4: Difference MOD-GPSNAV, S/C B, 21.01. From top to bottom: X, Y and Z-axis

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 16 of 38

3.2.1.3 Swarm C

Below is presented plot of MOD-NAV differences for S/C C, taken at the beginning of the week (21.01, Figure 3-5). From top to bottom, the plots show of MOD-NAV differences in ITFR reference frame: on X, Y and Z-axis respectively, differences are given in [m].

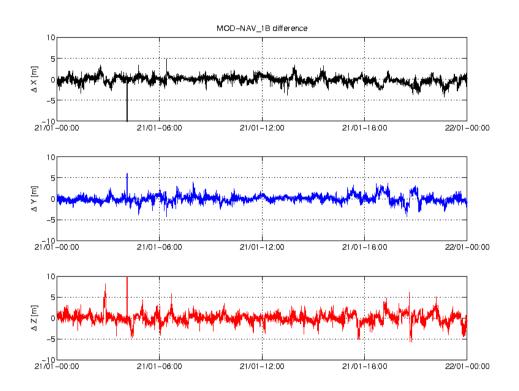


Figure 3-5: Difference MOD-GPSNAV, S/C C, 21.01. From top to bottom: X, Y and Z-axis

3.2.2 Attitude observations

3.2.2.1 Swarm A

Nothing to report.

3.2.2.2 Swarm B

Nothing to report.

3.2.2.3 Swarm C

Nothing to report.

3.3 Magnetic Products

For the magnetic products, the weekly monitoring consists in:

 ASM instrument monitoring: quartz frequency (nominal range: [2.949E7 – 2.950E7] Hz) and ASM temperature (temperature range shall be: [-30;+50] °C, Rel. Variation shall not exceed: 0.1 °C/sec).

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

- VFM instrument monitoring: temperatures (Rel. Variation shall not exceed: 0.1 °C/sec).
- Visual inspection of daily time series of magnetic field intensity F, B_{NEC} and B_{VFM}. Looking for gaps (or zero values in case of MAGx_LR_1B products), out-of-threshold values (i.e. exceeding +/- 60000 nT), and other strange features. Map plots of F and B_{NEC} for the whole week are then displayed.
- Monitoring of the ASM-VFM known anomaly: visual inspection of |B_{VFM}| F taken from MAGx_CA_1B products and recording of daily maximum variations and standard deviations. If +/- 1 nT are exceed on a given day, an alert is raised. Map plots of the residuals are shown along with weekly time series of the residuals with and without the "dB_Sun" correction: in fact, at least a part of the discrepancies found in the measurements between ASM and VFM are modelled through a stray field (dB_Sun) that is a function of the orientation of the VFM wrt Sun.
- Comparison of magnetic data (B_{NEC}) with a model (Chaos5).
- Second derivative of vector field in VFM and NEC frame. Only measurement points within ±10° latitude are considered, and values above 100 nT/s2 are considered out of threshold.
- 5-min correlations between S/C A and S/C C B_{NEC} measurements.
- Differences between S/C A and C, B_{NEC} measurements. Values above 8000 nT are considered out of threshold.

In Table 3-3 are listed events that have to be reported.

Table 3-3: List of events related to magnetic products to be reported in the monitoring for 2019, Week 4: 21/01 - 27/01.

Observation ID	Description	Affected parameter	Sect. of Obs. Description	Sect. of Obs. Analysis

3.3.1 VFM-ASM anomaly

- S/C A violation of:
 - VFM-ASM residuals threshold on 23/01, 24/01, 25/01, 26/01, 27/01;
 - o mean value of residuals threshold on 21/01, 22/01, 23/01, 24/01, 25/01, 26/01, 27/01;
- S/C B violation of:
 - VFM-ASM residuals threshold on 22/01, 23/01, 24/01, 25/01, 26/01, 27/01;
 - o mean value of residuals threshold on 22/01, 23/01, 24/01, 25/01, 26/01, 27/01;
 - o standard deviation of residuals threshold on 22/01, 23/01, 24/01, 25/01, 26/01, 27/01.

3.3.1.1 ASM-VFM difference statistics

In Table 3-4, one can see the statistics of the differences between magnetic field absolute value measured by ASM and by VFM. In the second and third column are reported the maximum differences, maximum negative and maximum positive respectively. The standard deviation is in the fourth column.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 18 of 38

DISC

The ASM-VFM difference is defined as follow:

 $dF = |B_{VFM}| - F_{ASM}$

Figure 3-6 and Figure 3-7 show the daily mean (circles) and standard deviation (crosses) of dF of the last month for Swarm A and Swarm B respectively.

Table 3-4: Swarm A and B, difference between absolute value of magnetic field measured by ASM and by VFM.

	Swarm A, 21/01 - 27/01, ASM-VFM difference						
Day	Max (nT)	Min (nT)	Standard deviation (nT)	Mean (nT)	Notes		
21/01	0,94	-0,41	0,27	0,315	See Section 2.4		
22/01	0,85	-0,3	0,26	0,302	See Section 2.4		
23/01	1,02	-0,24	0,23	0,338	See Section 2.4		
24/01	1,14	-0,29	0,25	0,329	See Section 2.4		
25/01	1,02	-0,33	0,27	0,355	See Section 2.4		
26/01	1,17	-0,3	0,28	0,364	See Section 2.4		
27/01	1,23	-0,31	0,27	0,339	See Section 2.4		

	Swarm B, 21/01 - 27/01, ASM-VFM difference						
Day	Max (nT)	Min (nT)	Standard deviation (nT)	Mean (nT)	Notes		
21/01	0,51	-0,47	0,21	0,074			
22/01	51629,07	18400,34	8840,91	36318,392	ASM in burst mode (see Section 2.4)		
23/01	51592,13	18483,99	8932,28	36099,301	ASM in burst mode (see Section 2.4)		
24/01	51464,59	18659,07	8809,66	36372,617	ASM in burst mode (see Section 2.4)		
25/01	51341,83	18627,54	8811,3	36346,061	ASM in burst mode (see Section 2.4)		
26/01	51536,37	18471,92	8844,74	36388,527	ASM in burst mode (see Section 2.4)		
27/01	51611,09	18382,01	8844,03	36276,881	ASM in burst mode (see Section 2.4)		

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

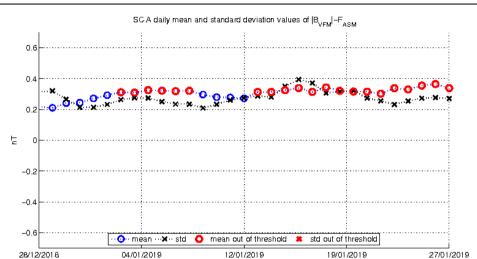


Figure 3-6: Daily mean and standard deviation values of ASM-VFM residuals (defined as $dF=|B_{VFM}|-F_{ASM}$) for S/C A.

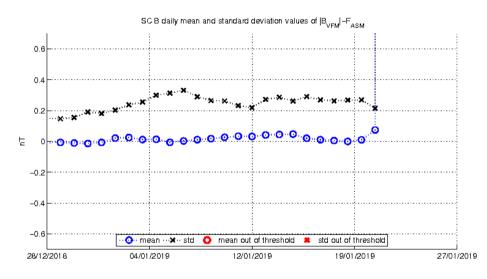
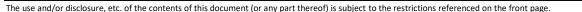
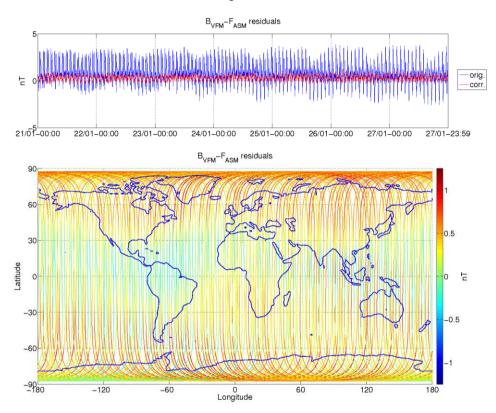



Figure 3-7: Daily mean and standard deviation values of ASM-VFM residuals (defined as $dF=|B_{VFM}|-F_{ASM}$) for S/C B.

Page 19 of 38

Swarm DISC Weekly Report


Doc. no: SW-RP-SER-GS-010, Rev: 1

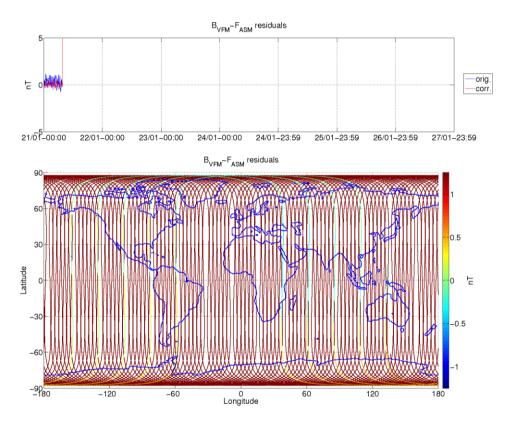
Page 20 of 38

DISC

3.3.1.2 Swarm A

The daily peak-to-peak difference around the week stays within [-0,41 - 1,23] nT. Below follow two plots of such differences for current week (Figure 3-8).

Figure 3-8: ASM-VFM residuals for S/C A, during monitoring period 21/01-27/01. In top figure are plotted: difference between |B_VFM| and F_ASM (without dB_Sun correction) (blue colour), and the residuals with dB_Sun corrections (red colour). In bottom figure residuals are presented on the world map.


Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

3.3.1.3 Swarm B

The daily peak-to-peak difference around the week stays within [-0,47 - 51629,07] nT. Below follow two plots of such differences for current week (Figure 3-9).

The ASM instrument on Swarm B is commanded in burst mode all the week. Thus the magnetic field intensity derived from the ASM and stored in MAGB_LR_1B and MAGB_CA_1B products is set to zero (see Section 2.1).

Figure 3-9: ASM-VFM residuals for S/C B, during monitoring period 21/01-27/01. In top figure are plotted: difference between |B_VFM| and F_ASM (without dB_Sun correction) (blue colour), and the residuals with dB_Sun corrections (red colour). In bottom figure residuals are presented on the world map.

3.3.1.4 Swarm C

No data because ASM is switched off.

3.3.2 ASM Instrument parameters: quartz frequency and ASM temperature (ASMAVEC_0)

For S/C A and B, the temperature and quartz frequency behaved as expected.

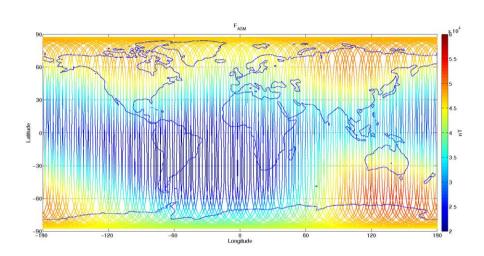
3.3.3 VFM Instrument parameters: VFM temperatures (MAG_CA)

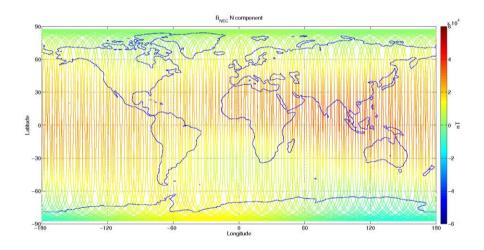
The VFM instrument parameters important for monitoring the instrument health are the VFM sensor temperatures: T_CDC, T_CSC and T_EU.

Page 21 of 38

Swarm DISC Weekly Report

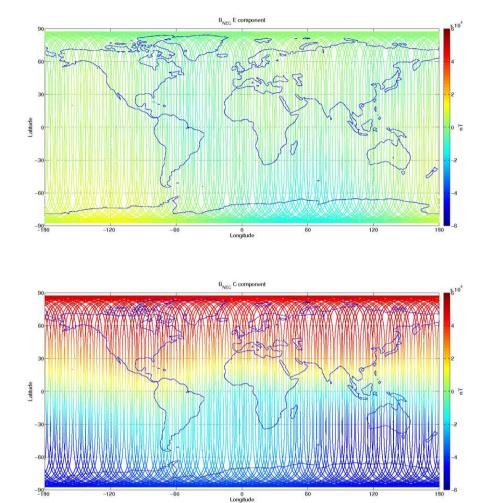
Doc. no: SW-RP-SER-GS-010, Rev: 1


DISC


For S/C A, B and C, for reported period, the temperatures behaved as expected.

3.3.4 Magnetic time series visual inspection

3.3.4.1 Swarm A

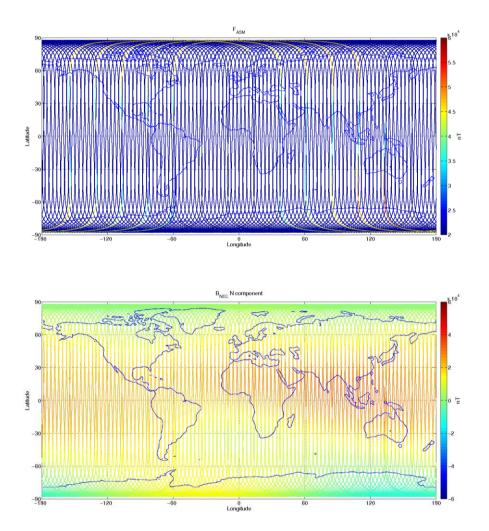

Map plots of magnetic field measurement for week 4 for S/C A can be seen in Figure 3-10 below.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Figure 3-10: S/C A, world map plots of the geomagnetic field and components measured during monitoring period 21/01-27/01. From top to bottom: F-magnetic field from ASM measurement, B_{NEC} components (North, East, and Centre) of magnetic field from VFM measurement.

Page 23 of 38


Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

3.3.4.2 Swarm B

Map plots of magnetic field measurement for week 4 for S/C B can be seen in Figure 3-11 below.

The ASM instrument on Swarm B is commanded in burst mode all the week. Thus the magnetic field intensity derived from the ASM and stored in MAGB_LR_1B and MAGB_CA_1B products is set to zero (see Section 2.1).

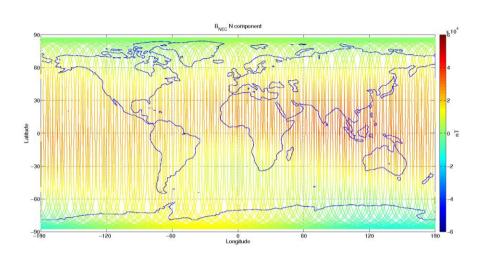
Swarm DISC Weekly Report

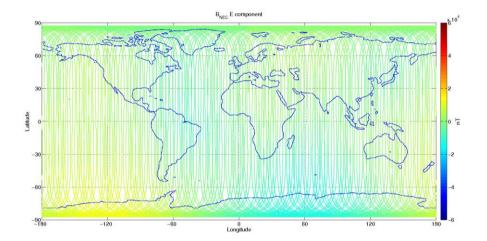
Doc. no: SW-RP-SER-GS-010, Rev: 1

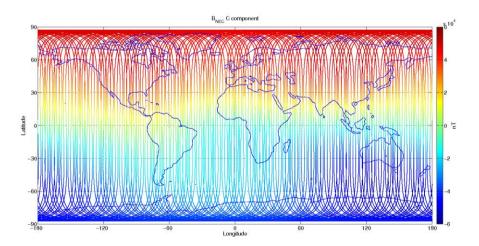
B_{NEC} E component atitude -120 12 0 Longitude B_{NEC} C component atitude 120 0 Longitude

Figure 3-11: S/C B, world map plots of the geomagnetic field and components measured during monitoring period 21/01-27/01. From top to bottom: F-magnetic field from ASM measurement, B_{NEC} components (North, East, and Centre) of magnetic field from VFM measurement.

Swarm DISC Weekly Report


Doc. no: SW-RP-SER-GS-010, Rev: 1

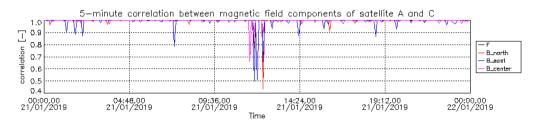

Page 26 of 38


DISC

3.3.4.3 Swarm C

Map plots of magnetic field measurement for week 4 for S/C C can be seen in Figure 3-12.

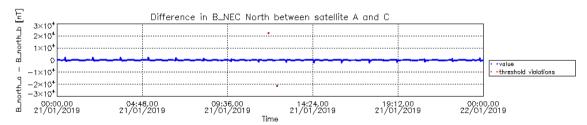
Swarm DISC Weekly Report

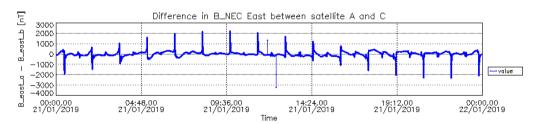

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 27 of 38

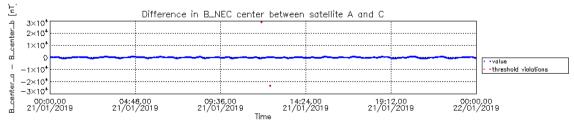
Figure 3-12: S/C C, world map plots of the geomagnetic field and components measured during monitoring period 21/01-27/01. From top to bottom: B_{NEC} components (North, East, and Centre) of magnetic field from VFM measurement.

3.3.5 S/C A and C magnetic correlation


In the plot below is shown the correlation in 5-minutes intervals of magnetic data between satellite A and C. B_north, B_east, and B_center are the components of the magnetic field vector in NEC frame.


Figure 3-13: Correlation in magnetic data between satellite A and C for B_north, B_east, and B_center components of B_{NEC} are the components of the magnetic field vector in NEC frame

3.3.6 S/C A and C magnetic difference


The next three plots show the differences in magnetic data between satellite A and C. Threshold is set to 8 000 nT for each component.

in degrees), from top to bottom: 1) Br, 2) B0 and 3) Bo.

the external contribution based on Dst index is not taken into account.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

3.3.7 B_{NEC} vs Chaos5 model residuals

As a general feature one can see the field residuals to be steady and usually below 50 nT at low and middle latitudes, up to |55| - |60| degrees; then the residual increases at high latitudes because the Chaos model does not take into account the contribution from the external field ([RD.17]).

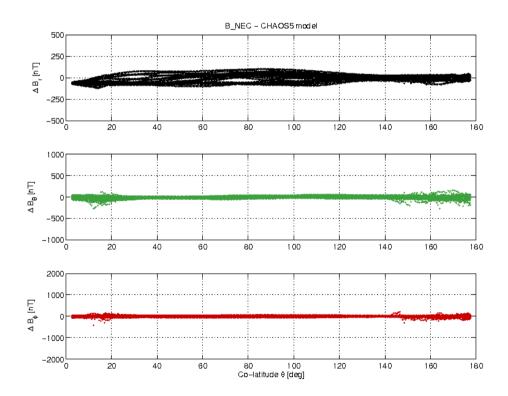

The magnetic field measurement is compared to magnetic field estimated from the Chaos5 global geomagnetic field model (only Core and Crustal contributions). Currently in the monitoring routines

Figure 3-17, Figure 3-19 and Figure 3-21 show field residuals dB=B_{NEC} - B_{Chaos} (all versus co-latitude

Figure 3-18, Figure 3-20 and Figure 3-22 show, from top to bottom, the time series on 21/01 of: (1-2-3) residuals of B_{NEC}-B_{Chaos} by components, related to S/C A, B and C respectively.

The component most affected by residual spikes and variations is $B\theta_{NEC}$, i.e. the component that shows the variations of the field wrt to co-latitude. At high latitudes, the order of magnitude of the variability is about +/- 200 nT.

3.3.7.1 Swarm A

Figure 3-17: S/C A day 21.01 B_{NEC} - B_{Chaos} vs colatitude.

DISC

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 29 of 38

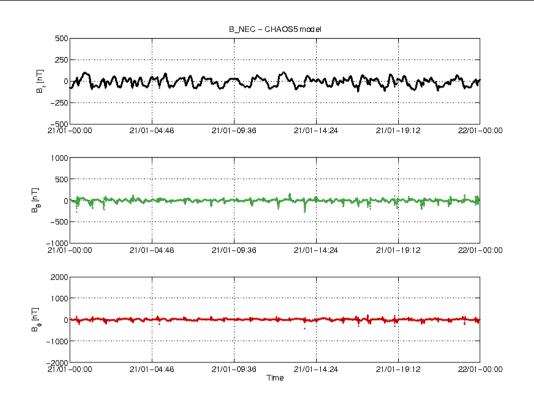


Figure 3-18: S/C A day 21.01: time series of B_{NEC} – B_{Chaos} residuals.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 30 of 38

DISC

3.3.7.2 Swarm B

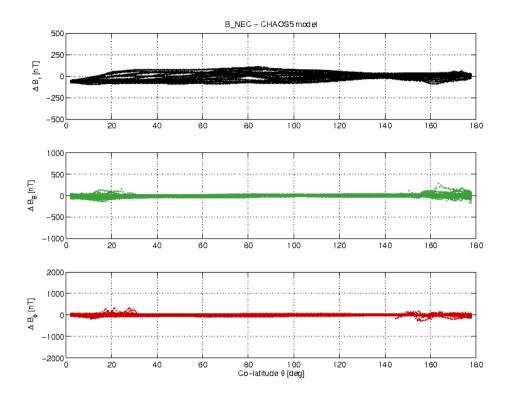


Figure 3-19: S/C B day 21.01 B_{NEC} - B_{Chaos} difference vs colatitude.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 31 of 38

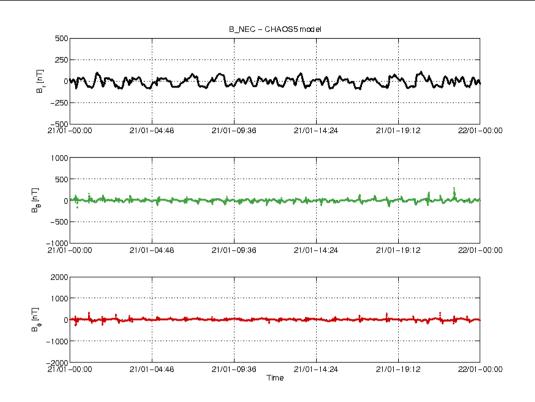


Figure 3-20: S/C B day 21.01 time series of B_{NEC} – B_{Chaos} residuals.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 32 of 38

3.3.7.3 Swarm C

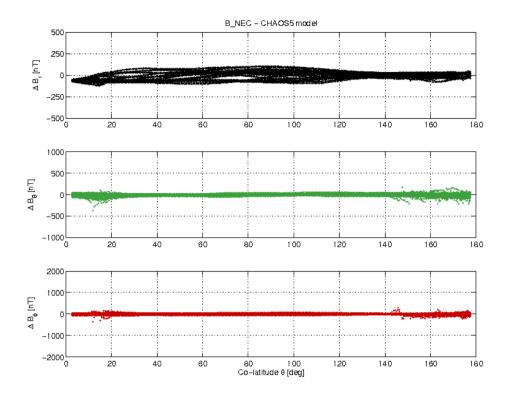


Figure 3-21: S/C C day 21.01 B_{NEC} - B_{Chaos} difference vs colatitude.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

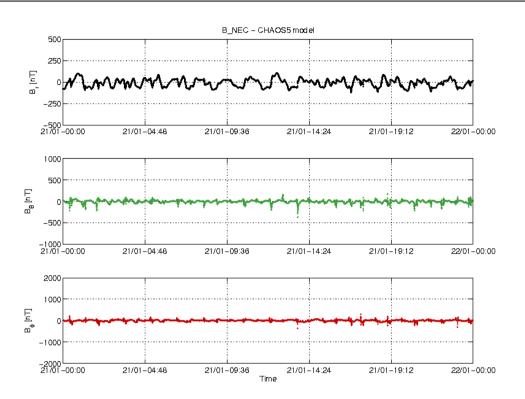


Figure 3-22: S/C C day 21.01 time series of B_{NEC} – B_{Chaos} residuals.

3.3.8 Second derivative of BNEC and BVFM

The second derivative of the vector magnetic field measurements in both VFM and NEC frame has been performed on 50Hz data (MAGx_HR_1B). In this analysis only measurement points within $\pm 10^{\circ}$ latitude have been considered. Figure 3-23, Figure 3-24 and Figure 3-25 show the daily standard deviation of the second derivative of BVFM of the last month for S/C A, B, and C respectively.

Page 33 of 38

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 34 of 38

3.3.8.1 Swarm A

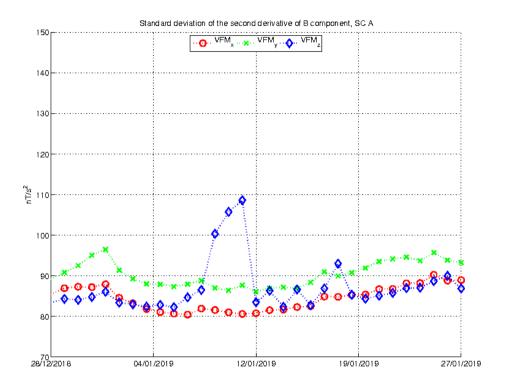


Figure 3-23: Standard deviation of the second derivative of B component

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

DIS

3.3.8.2 Swarm B

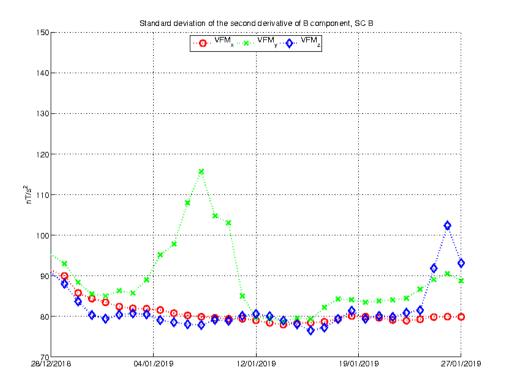


Figure 3-24: Standard deviation of the second derivative of B component

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

3.3.8.3 Swarm C

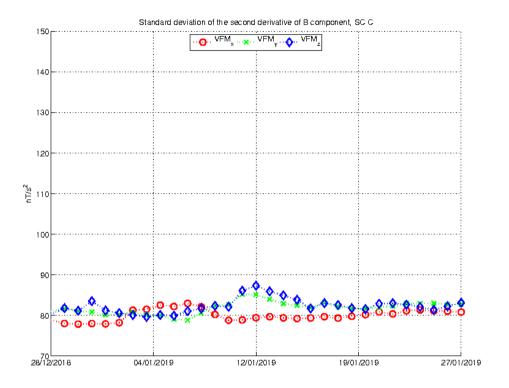


Figure 3-25: Standard deviation of the second derivative of B component

Page 36 of 38

DIS

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

4. **ON-DEMAND** analysis

Nothing to report.

DISC

Page 37 of 38

Swarm DISC Weekly Report

Doc. no: SW-RP-SER-GS-010, Rev: 1

Page 38 of 38

DISC

End of Document

The use and/or disclosure, etc. of the contents of this document (or any part thereof) is subject to the restrictions referenced on the front page.