IDEAS+ Swarm Weekly report For Year 2015, Week 17 (20/04 - 26/04)

IDEAS+-SER-OQC-REP-2071 Issue 1.0

Customer : ESRIN Document Ref : IDEAS+-SER-OQC-REP-2071

Contract No : 4000111304/14/I-AM Issue Date : 05 May 2015

WP No : 6110 Issue : 1.0

IDEAS+ Swarm Weekly Report 2015/17: 2015/04/20 - 2015/04/26

Abstract : This is the Instrument Data quality Evaluation and Analysis Service Plus

(IDEAS+) Swarm Weekly report on Swarm products quality, covering the period from

20 to 26 April 2015.

Author : Approval :

Igino Coco and Jan Miedzik on Lidia Saavedra de Miguel

Coordinator

IDEAS+ Science and Ops.

Distribution : ESA/ESRIN EOP-GMQ

ESA/ESRIN EOP-GM Swarm MM

behalf of Swarm IDEAS+ Team

IDEAS+ Leadership Team IDEAS+ subcontractors ESA/ESTEC Swarm PLSO ESA/ESOC Swarm FOS

Copyright © 2015 Serco Italia Spa

All rights reserved.

No part of this work may be disclosed to any third party translated reproduced copied or disseminated in any form or by any means except as defined in the contract or with the written permission of Serco Italia Spa.

Serco Italia Spa Via Sciadonna 24/26, 00040, Frascati, Italy Tel: +39 06 98354400 Fax: +39 06 9419426 www.serco.com

Serco Italia Spa Page 1 of 25

© 2015

TABLE OF CONTENTS

Contents

TABLE OF CONTENTS	2
INTRODUCTION	
1.2 Reference documents	
2. SUMMARY OF THE OBSERVATIONS	
2.1 General status of Swarm instruments and Level 1B products quality2.2 Plan for operational processors updates	
Quality Working Group and Cal/Val Coordination.Summary of observations for 2015, Week 17 (20/04 - 26/04)	7
3. ROUTINE QUALITY CONTROL	
3.1 Gaps analysis	
3.2 Orbit and Attitude Products	
3.2.1 Swarm A	
3.2.2 Swarm B	
3.2.3 Swarm C	
3.3 Magnetic Products	
3.3.1 Swarm A	
3.3.2 Swarm B	
3.3.3 Swarm C	
4. ON-DEMAND ANALYSIS	24

IDEAS+ Swarm Weekly report For Year 2015, Week 17 (20/04 - 26/04)

IDEAS+-SER-OQC-REP-2071 Issue 1.0

This page intentionally left blank.

Serco Italia Spa © 2015 Page 3 of 25

AMENDMENT POLICY

This document shall be amended by releasing a new edition of the document in its entirety. The Amendment Record Sheet below records the history and issue status of this document.

AMENDMENT RECORD SHEET

ISSUE	DATE	REASON
1.0	05 May 2015	First issue

Serco Italia Spa © 2015 Page 4 of 25

1. INTRODUCTION

This document refers to the activities carried out in the framework of the Sensor Performance, Products and Algorithms (SPPA) Office [RD.1], and as such it reports on work related to:

- Algorithms and Processors Development, Maintenance and Evolution: these include all algorithm and software evolution and maintenance aspects for the different components, for both the Operational processors (OP) and Prototypes processors (PP) of L1 and L2 chains.
- Performance Assessment: these include all Quality Control activities (on-line and offline, systematic or on-demand), for the applicable product levels.
- System Calibration: these include the activities related to calibration, from sensor to system level. They also include aspects like cross calibration and handling of external calibration sources.
- Product validation: these include definition and maintenance of product validation plans.
- End-to-end Sensor Dataset Performance: these include activities related to the
 organisation and coordination of Quality Working Groups and all aspects of the
 Experimental platform. It also covers the product baseline, coordination and
 handling of external communities, and all aspects of ADF handling (both for the
 operational processors and for the prototypes).

This weekly report constitutes a work in progress throughout the mission life time, and new parts and complements will be added while the consolidation of knowledge on Swarm data and instruments will progress.

Section 2.1 always gives an overview of the general quality status of the mission instruments and products, while the main observations of the week are summarized in Section 2.4.

The document also includes information on data quality for the three Swarm spacecraft, inferred from automated HTML quality reports which are produced on daily basis for each product. Please contact the IDEAS+ Swarm team if interested in accessing the reports via web or FTP (all details about interfaces and folder structure available on [RD.2]). Such quality reports represent the core of the Routine Quality Control (Chapter 3). A description of the implemented quality checks is given in [RD.3], and references therein.

Basing on specific findings of the routine quality control, or on-demand from other entities (i.e. Swarm PDGS, FOS, Mission Management, Post-Launch Support Office, Expert Support Laboratories, Quality Working Groups, user community), anomalies can be triggered and preliminary characterisations and investigations of such anomalies are given in Chapter 4.The anomalies documented in the Weekly Reports are tracked in the following way:

- 1. If triggered by ESA Eohelp or within the Service: IDEAS+ action and ticketing system (http://requests-sppa.serco.it/RT3/index.html).
- 2. If triggered by IDEAS+ Swarm team or other entities:
 - 2a. If the observation/analysis leads to an anomaly to be addressed to the processor provider (GMV): SPR on EO ARTS (https://arts.eo.esa.int), SWL1L2DB project;
 - 2.b. If the observation/analysis does not lead to an anomaly or the investigation shall be escalated to other entities (PLSO/industry, ESL, PDGS): Action tracked on EO ARTS, **SW-IDEAS** project, then addressed to the proper tracking system if needed (e.g. JIRA for ESLs, SW-CP-AR project on EO ARTS for PDGS).

Information on Level 1B Swarm products can be found in [RD.4].

Serco Italia Spa Page 5 of 25

1.1 Current Operational configuration of monitored data:

- Processors Version: L1BOP 3.15, L2-Cat2 1.12
- L0 input products baseline: 02
- L1B baseline: 03 (for definitions and description of the data baseline concept see https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/swarm/data-access/product-baseline-definition)
- Level 2 Cat 2 baseline: 01
- Input auxiliary files baseline: CCDB 0009, ADF 0101
- MPPF-CVQ v.2.12p1

1.2 Reference documents

The following is a list of documents with a direct bearing on the content of this report. Where referenced in the text, these are identified as RD.n, where 'n' is the number in the list below:

- [RD.1] Sensor Performance, Products and Algorithms (SPPA), PGSI-GSOP-EOPG-TN-05-0025. Version 2.3.
- [RD.2] Swarm PDGS External DMC Interface Control Document, SW-ID-DS-GS-0001, Issue 3.2.
- [RD.3] Swarm MPPF-CVQ Monitoring Baseline Document, ST-ESA-SWARM-MBD-0001, Issue 1.7.
- [RD.4] Swarm Level 1B Product Definition, SW-RS-DSC-SY-0007, Issue 5.13.
- [RD.5] Swarm IDEAS Configuration Management Plan, IDEAS-SER-MGT-PLN-1081 v0.14.
- [RD.6] Swarm Quality Control Project Plan, IDEAS-SER-MGT-PLN-1071
- [RD.7] SW_L1BOP_status_20141124_MoM
- [RD.8] Planned Updates for Level 1b, SW-PL-DTU-GS-008, Rev: 1dC.
- [RD.9] IDEAS+ Swarm Weekly Report: 25/08/2014 31/08/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140825_20140831.pdf (ref. for SWL1L2DB-9)
- [RD.10] IDEAS+ Swarm Weekly Report: 29/09/2014 05/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140929_20141005.pdf (ref. for SW-IDEAS-34)
- [RD.11] IDEAS+ Swarm Weekly Report: 06/10/2014 12/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20141006_20141012.pdf (ref. for SW-IDEAS-36)
- [RD.12] IDEAS+ Swarm Weekly Report: 20/10/2014 26/10/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20141020_20141026.pdf (ref. for SW-IDEAS-40, GPS sync loss)
- [RD.13] IDEAS+ Swarm Weekly Report: 15/09/2014 21/09/2014, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_20140915_20140921.pdf (ref. for SW-IDEAS-27)
- [RD.14] Swarm L1B 03.15 Validation Report, OSMV-OPMT-SRCO-RP-15-3385, Issue 1.3.
- [RD.15] IDEAS+ Swarm Weekly Report: 23/03/2015 29/03/2015, IDEAS+-SER-OQC-REP-2071_SPPA_SwarmWeeklyReport_201513_20150323_20150329.pdf

Serco Italia Spa Page 6 of 25

2. SUMMARY OF THE OBSERVATIONS

General status of Swarm instruments and Level 1B products 2.1 quality

TII status. 40 deg slew maneuvers have been planned for SW A and C on Tuesday 5/5 in order to exploit the effect of a different exposure to ionospheric plasma of the TII sensors.

2.2 Plan for operational processors updates

L1BOP 3.15 has been put in operation March 23th, 2015. The data quality with the new processor has been quickly assessed and it is satisfactory ([RD.14]).

The PDGS team concluded the recovery of the failed production due to the bug in L1BOP 3.14, and the generation of the Swarm C magnetic production lost from 6th November (when ASM has fallen down).

The cross-verification activity for the changes to be implemented in the next version of the processor in May-June is on-going:

- 1. I. Coco will provide GMV the test scenarios for anomalies and non-regressions by the end of week 19.
- 2. I. Coco will provide new TEST CCDBs for ACC, SW1 and EFITC file types and the TDS for PLASMA cross-verification by the end of week 19.

Verification of L2CAT2 OP 1.13 and 1.14 is ongoing. Bugs have been found in the TEC and EEF processors. The bug in TEC has been resolved by the manufacturer and test data have been sent to GFZ for cross-verification purposes for TEC and IBI. EEF is still under investigation. FAC seems now ok.

2.3 **Quality Working Group and Cal/Val Coordination**

Coordination is in place for organizing the 6th Swarm Data Quality Workshop in Paris (hosted by IPGP) in late September 2015.

Following the QWG recommendations in Potsdam and the scientists need in view of the IUGG conference in June, the preliminary plasma dataset has been released early February 2015.

DTU/ESL shared the final set of corrected data on early April. These corrected data also contain the dBsun correction, providing the users the possibility to access to uncorrected

The Task Force meeting was held on 9-10 April in ESTEC. During this meeting the following decisions have been taken:

- ESA and CNES have to be prepared for potential further ASM failures scenarios.
- The corrected data provided by Lesur-Tøffner-Clausen (DTU) will be distributed by ESA to all Swarm users¹. Soon, the correction will also be implemented in the OP. Meanwhile, the team agreed that the following investigation should be done:
 - Clarifications of coordinate systems used (and left out) in models. To confirm overall dynamics and time constants / phase shifts.

Serco Italia Spa Page 7 of 25

¹The corrected Swarm magnetic data have been distributed to all Swarm users on 13/04 (https://earth.esa.int/web/quest/missions/esa-operational-eo-missions/swarm/news/-/article/corrected-swarm-magnetic-data-now-available).

IDEAS+ Swarm Weekly report For Year 2015, Week 17 (20/04 - 26/04)

IDEAS+-SER-OQC-REP-2071 Issue 1.0

- ii. Splinter group with Airbus, DTU-MI, and ESA to further coordinate investigations of "secondary" contributions.
- iii. (v x B) further investigations during: 1) the 4-step-360 rotation data, 2) the Alpha-Charlie rotations.
- iv. Test with same sun attitude conditions (excluding manoeuvres) but different plasma conditions or magnetic longitude.
- v. To better quantify (from models) potential plasma-related effects. Link to MAGx_HR.
- vi. Involvement of EFI-TII team.

The next task force meeting is scheduled for 2-3 July 2015.

2.4 Summary of observations for 2015, Week 17 (20/04 - 26/04)

During the monitored week the following observations can be reported:

• Overall MOD to NAV difference in week 17 is of good quality. Greatest difference (spikes) exceeding 17m noted on 24/04 for S/C C. Some occurrence of SW-IDEAS-34 ([RD.10]) anomaly still observed.

Serco Italia Spa Page 8 of 25

3. ROUTINE QUALITY CONTROL

3.1 Gaps analysis

- **4 seconds telemetry gap** in the all Level 0 files for S/C A, between 21/04 and 22/04/2015. These are grouped in two gaps intervals:

o **21/04:** 18:38:45 - 18:38:47

o **22/04:** 00:15:53 – 00:15:55

3.2 Orbit and Attitude Products

The following events have to be reported:

Observation ID	Description	Affected parameter	Sect. of Obs. Description	Sect. of Obs. Analysis
SW-IDEAS-34	OBS_ROUTINE: large number of spiky features observed in the NAV-MOD difference	Orbits (position and velocity)	3.2.2.1	[RD.10]

Table 1: List of events related to attitude and orbit products to be reported in the monitoring for 2015, Week 17: 20/04 - 26/04.

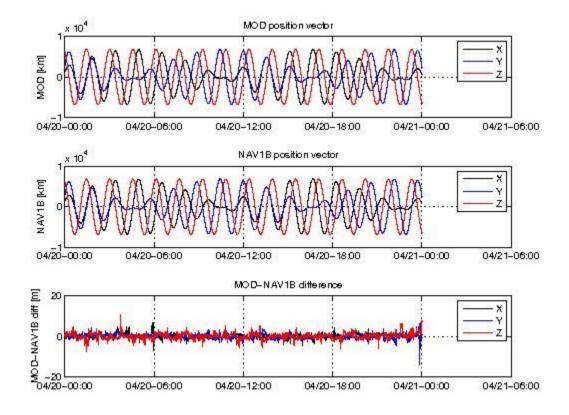
The relevant parameters that have been monitored are:

- Position difference between calculated Medium Accuracy orbits (MODx_SC_1B) and on-board solution (GPSxNAV_0). Threshold values for such differences have not been assessed yet: we have just monitored the average values and maximum variations around the week, and reported in tables in the sections below, along with some example from the HTML daily reports. For the time being we evaluated an anomaly should be raised if one (or more) of the following conditions occurs:
 - The average difference on a given day exceeds the position accuracy requirement for the mission (1.5 m),
 - The variability around the average is quite high: standard deviation threshold has been arbitrarily chosen to be twice the position accuracy requirement for the mission (2-sigma = 3 m).
 - At least 4-5 spikes are observed on a given day, exceeding +/- 50 m.
- Visual inspection of Star Tracker characterisation flags (STRxATT_1B)
- Deviation of the quaternion norm from unity (deviation threshold = $\pm 10^{-9}$)
- Visual inspection of Euler Angles derived from quaternions.

3.2.1 Swarm A

3.2.1.1 Position statistics

In Table 2 one can see the statistics of the differences between MOD and on-board solution positions. In the third column the maximum differences (maximum negative and maximum positive) are reported. The maximum standard deviation is in the fourth column. Maxima, minima and standard deviations usually refer to the Z component which is often the most disturbed; in case another component is most affected, it will be specified in parentheses.


Serco Italia Spa Page 9 of 25

Swarm A, 20/04 - 26/04, Position difference						
Day	Average difference (m)	Maximum difference (m)		Maximum standard deviation (m)	Notes	
20/04	0.14	-14.1(Y)	10.5	1.43		
21/04	0.19	-12.6	12.0	1.95		
22/04	0.10	-7.3	10.9	1.47		
23/04	0.08	-8.9	8.6	1.40		
24/04	0.12	-10.6(Y)	8.9	1.66		
25/04	0.15	-6.7	7.9	1.33		
26/04	0.10	-12.7	7.6	1.89		

Table 2: Swarm A, difference between MOD and on-board solution positions. If not specified maximum difference and maximum standard deviation refers to the Z axis.

Below some plot example follows of such differences taken at the beginning of the week (20/04, Figure 1) in the middle (24/04, Figure 2) and at the end (26/04, Figure 3). From top to bottom the plots show: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The values of position are given in [km] and the difference between both solutions is given in [m].

Figure 1: Difference MOD-GPSNAV, S/C A, 20/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

Serco Italia Spa Page 10 of 25

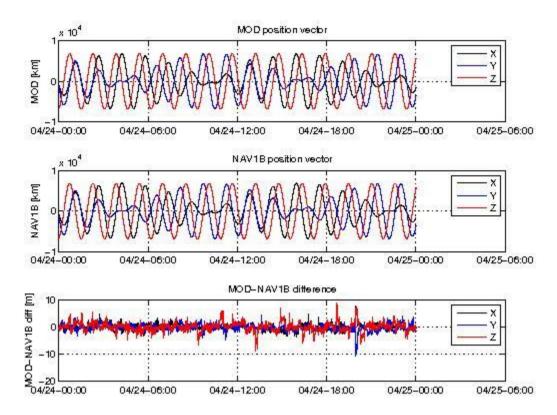


Figure 2: Difference MOD-GPSNAV, S/C A, 24/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

Serco Italia Spa © 2015 Page 11 of 25

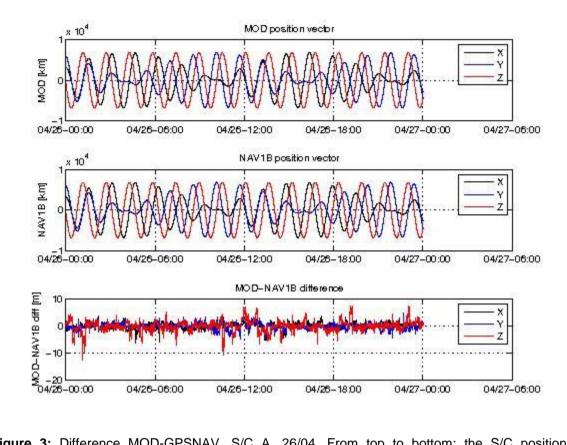


Figure 3: Difference MOD-GPSNAV, S/C A, 26/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

3.2.1.2 **Attitude observations**

Nothing to report.

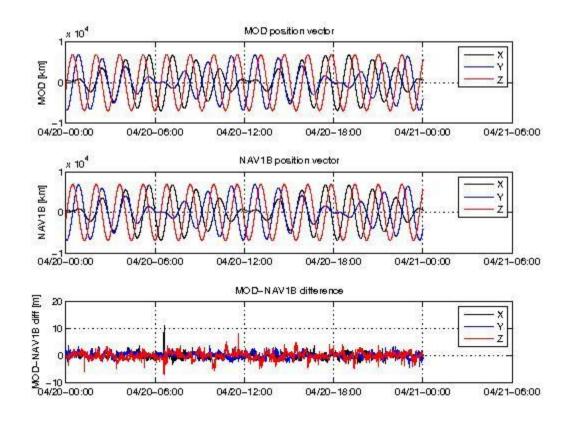
3.2.2 Swarm B

3.2.2.1 **Position Statistics**

In Table 3 one can see the statistics of the differences between MOD and on-board solution positions. In the third column the maximum differences (maximum negative and maximum positive) are reported. The maximum standard deviation is in the fourth column. Maxima, minima and standard deviations usually refer to the Z component which is often the most disturbed; in case another component is most affected, it will be specified in parentheses.

Swarm B, 20/04 - 26/04, Position difference					
Day	Average Difference (m)	Maximum difference (m)		Standard Deviation (m)	Notes
20/04	0.11	-7.1	11.0(X)	1.28	
21/04	0.12	-9.4	12.1	1.74	
22/04	0.06	-14.4	8.0	1.68	SW-IDEAS-34 [RD.10]
23/04	0.13	-6.9	10.6	1.35	

Serco Italia Spa Page 12 of 25



Swarm B, 20/04 - 26/04, Position difference					
24/04	0.16	-16.0	9.3	1.74	
25/04	0.10	-7.4	7.5	1.27	
26/04	0.10	-11.5	11.1	1.70	SW-IDEAS-34 [RD.10]

Table 3: Swarm B, difference between MOD and on-board solution positions. If not specified maximum difference and maximum standard deviation refers to the Z axis.

Below some plot example follows of such differences taken at the beginning of the week (20/04, Figure 4), in the middle (22/04, Figure 5), and at end of the week (26/04, Figure 6). From top to bottom the plots show: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The values of position are given in [km] and the difference between both solutions is given in [m].

In Figure 5 and Figure 6, two examples of SW-IDEAS-34 ([RD.10]) are circled in red: the deviations from the average value are remarkable, and for several minutes the MOD-NAV difference takes value higher/lower than the average

Figure 4: Difference MOD-GPSNAV, S/C B, 20/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

Serco Italia Spa Page 13 of 25

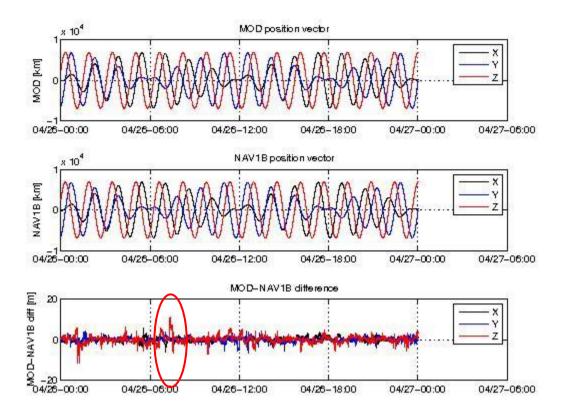



Figure 5: Difference MOD-GPSNAV, S/C B, 22/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The red-circled area shows an example of SW-IDEAS-34 anomaly ([RD.10]).

Serco Italia Spa © 2015 Page 14 of 25

Figure 6: Difference MOD-GPSNAV, S/C B, 26/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The red-circled area shows an example of SW-IDEAS-34 anomaly ([RD.10]).

3.2.2.2 Attitude observations

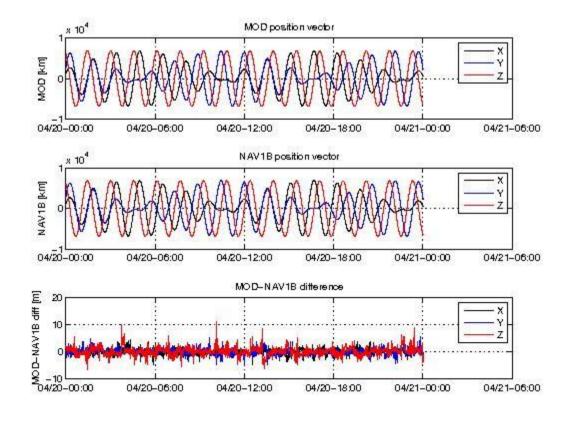
Nothing to report.

3.2.3 Swarm C

3.2.3.1 Position Statistics

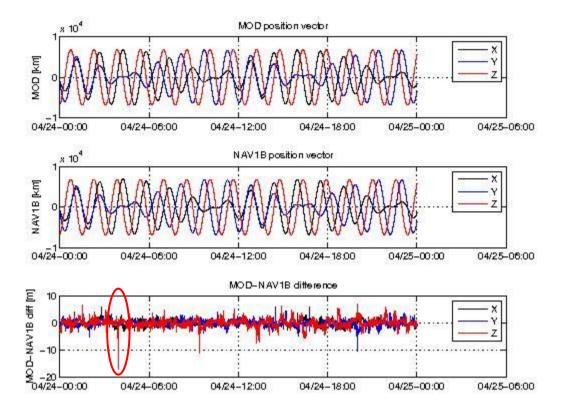
In Table 4 one can see the statistics of the differences between MOD and on-board solution positions. In the third column the maximum differences (maximum negative and maximum positive) are reported. The maximum standard deviation is in the fourth column. Maxima, minima and standard deviations usually refer to the Z component which is often the most disturbed; in case another component is most affected, it will be specified in parentheses.

Serco Italia Spa Page 15 of 25



Swarm C, 20/04 - 26/04, Position difference					
Day	Average Difference (m)	Maximum difference (m)		Standard Deviation (m)	Notes
20/04	0.13	-6.5	11.0	1.40	
21/04	0.11	-8.3	10.3	1.70	
22/04	0.10	-7.9	8.2	1.39	
23/04	0.11	-6.2	6.2	1.32	
24/04	0.05	-17.0	7.1(X)	1.47	
25/04	0.15	-5.9	7.3	1.25	
26/04	0.07	-8.2	7.6	1.49	

Table 4: Swarm C, difference between MOD and on-board solution positions. If not specified maximum difference and maximum standard deviation refers to the Z axis.


Below some plot example of such differences follows, taken at the beginning of the week (20/04, Figure 7), in the middle (24/04, Figure 8) and at the end (26/04, Figure 9). From top to bottom the plots show: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The values of position are given in [km] and the difference between both solutions is given in [m].

In Figure 8 the red-circled area shows a spike in the Z component of the MOD-NAV difference.

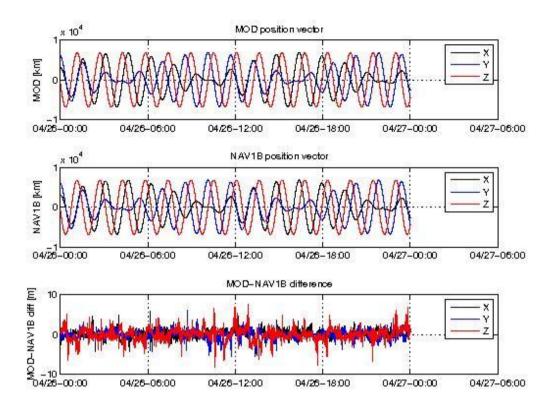

Figure 7: Difference MOD-GPSNAV, S/C C, 20/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

Figure 8: Difference MOD-GPSNAV, S/C C, 24/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two. The red-circled area shows a spike in the Z component.

Serco Italia Spa Page 17 of 25

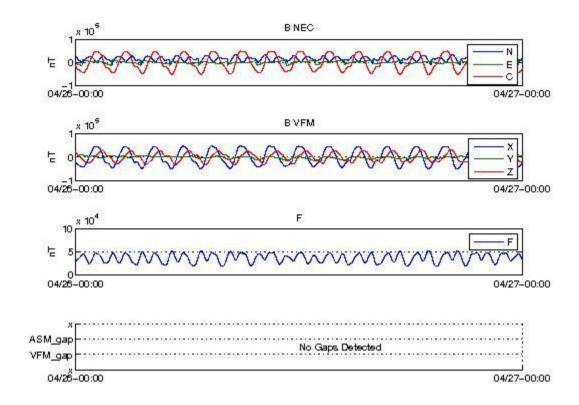
Figure 9: Difference MOD-GPSNAV, S/C C, 26/04. From top to bottom: the S/C position determined from the MOD calculation, the S/C position determined on-board, and the difference between the two.

3.2.3.2 Attitude observations

Nothing to report.

3.3 Magnetic Products

For the magnetic products the weekly monitoring consists in:


- Visual inspection of daily time series of magnetic field intensity F, B_{NEC} and B_{VFM}. Looking for gaps (or zero values in case of MAGx_LR_1B products), out-of-threshold values (i.e. exceeding +/- 60000 nT), and other strange features.
- Monitoring of the VFM-ASM known anomaly: visual inspection of |B_{NEC}| F and recording of daily maximum variations. If +/- 5 nT are exceed on a given day, an alert is raised.
- TCF.VFM parameters monitoring (VFM calibration parameters): series of biases, scales, non-orthogonality factors and RMS. **This check is performed on monthly basis.**

3.3.1 Swarm A

3.3.1.1 Magnetic time series visual inspection

An example of representative magnetic field time series for S/C B (26/04) can be seen in Figure 10 below.

Figure 10: Time series of the geomagnetic field, for 26/04, S/C A. From top to bottom: magnetic field components in NEC reference frame, magnetic field components in the VFM reference frame, magnetic field intensity (F) from ASM, and location of gaps (if any).

3.3.1.2 VFM-ASM anomaly

The daily peak-to-peak difference around the week is, on average: [-2.0, 2.0] nT, with a few peaks of about 1-2 nT.

Below two example plots follows of such differences: 20/04 (Figure 11), and 26/04 (Figure 12). From top to bottom the plots show: The VFM module, the ASM module, the difference ASM-VFM

Serco Italia Spa Page 19 of 25

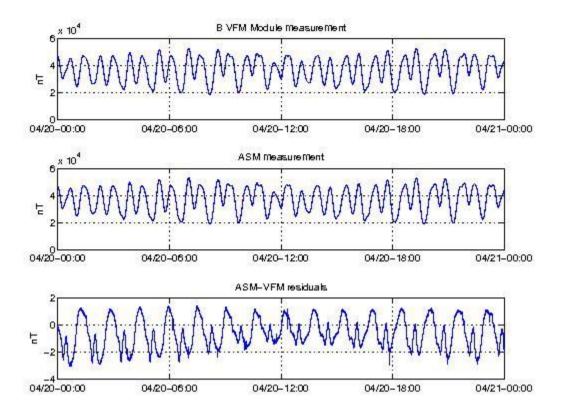


Figure 11: VFM module, ASM module and ASM-VFM residuals for S/C A, 20/04.

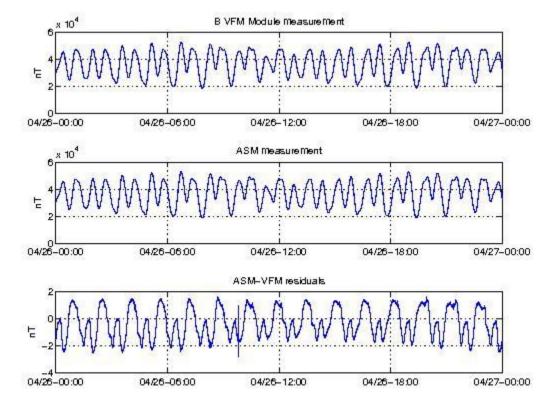
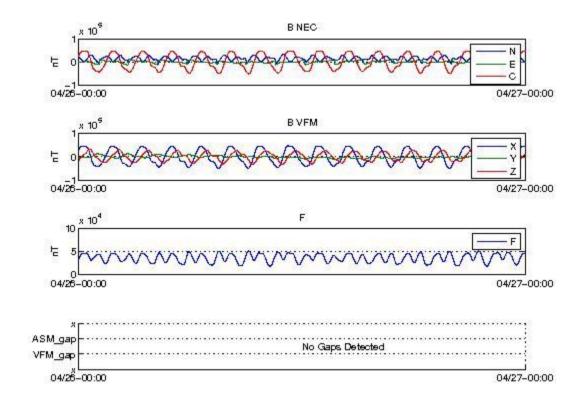


Figure 12: VFM module, ASM module and ASM-VFM residuals for S/C A, 26/04.

Serco Italia Spa Page 20 of 25


3.3.1.3 TCF.VFM monitoring

The TCF.VFM monitoring is a monthly check and will be contained in the first report of May, related to April 2015.

3.3.2 Swarm B

3.3.2.1 Magnetic time series visual inspection

An example of representative magnetic field time series for S/C B (26/04) can be seen in Figure 13 below.

Figure 13: Time series of the geomagnetic field for 26/04, S/C B. From top to bottom: magnetic field components in NEC reference frame, magnetic field components in the VFM reference frame, magnetic field intensity (F) from ASM, and location of gaps (if any).

3.3.2.2 VFM-ASM anomaly

The daily peak-to-peak difference around the week is, on average: [-2.0, 2.0] nT, with a few peaks of usually below 1nT and one peak of 5nT on 21/04

Below two example plots follows of such differences: 20/04 (Figure 14), and 26/04 (Figure 15). From top to bottom the plots show: The VFM module, the ASM module, the difference ASM-VFM.

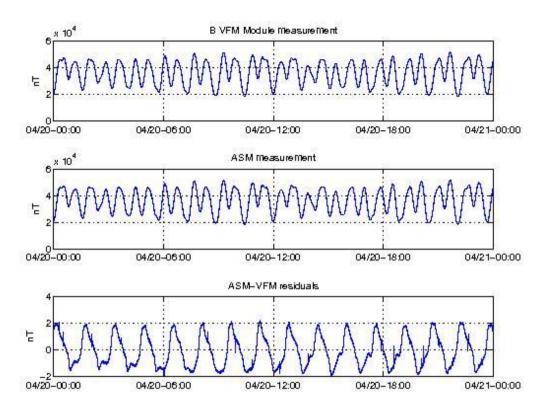


Figure 14: VFM module, ASM module and ASM-VFM residuals for S/C B, 20/04.

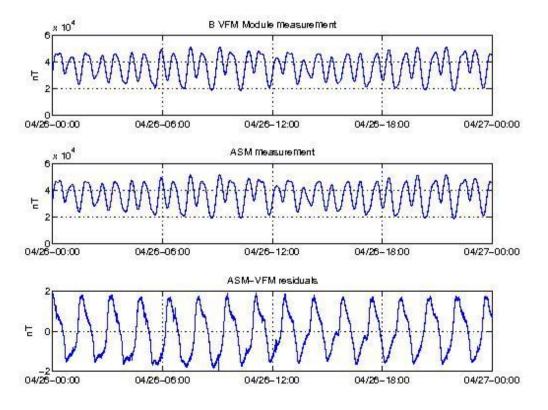
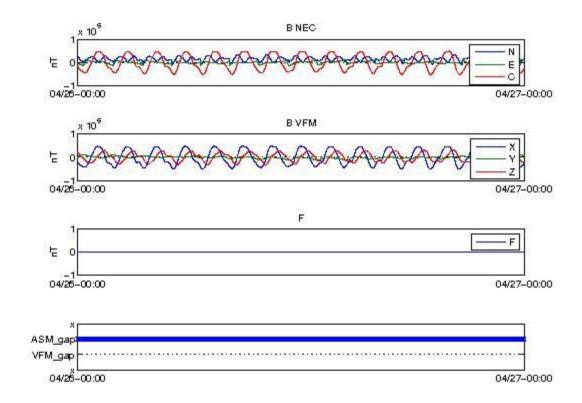


Figure 15: VFM module, ASM module and ASM-VFM residuals for S/C B, 26/04.

Serco Italia Spa Page 22 of 25


3.3.2.3 TCF.VFM monitoring

The TCF.VFM monitoring is a monthly check and will be contained in the first report of May, related to April 2015.

3.3.3 Swarm C

3.3.3.1 Magnetic time series visual inspection

An example of magnetic field time series for S/C C (26/04) can be seen in Figure 16.

Figure 16: Time series of the geomagnetic field for 26/04, S/C C. From top to bottom: magnetic field components in NEC reference frame, magnetic field components in the VFM reference frame, magnetic field intensity (F) from ASM (no data here because ASM it is off) and location of gaps.

3.3.3.2 VFM-ASM anomaly

No data because ASM is switched off.

3.3.3.3 TCF.VFM monitoring

No data because ASM is still switched off

3.3.4 Summary of TCF behaviour for the three S/C

The TCF.VFM monitoring is a monthly check and will be contained in the first report of May, related to April 2015.

4. **ON-DEMAND ANALYSIS**

After one month standard deviation of (B_nec - F) on both Alpha and Bravo has reached the same level. (See [RD.15])

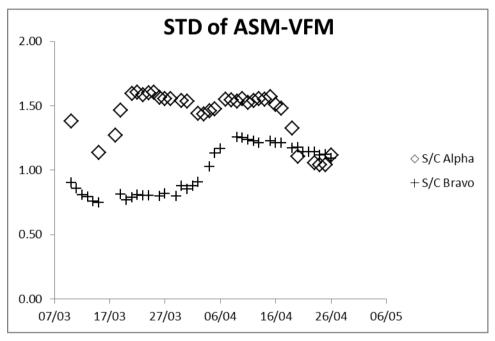


Figure 17: Standard deviation of the $|B_{NEC} - F|$ difference for S/C A and B during March and April 2015.

Serco Italia Spa © 2015 Page 24 of 25

IDEAS+ Swarm Weekly report For Year 2015, Week 17 (20/04 - 26/04)

IDEAS+-SER-OQC-REP-2071 Issue 1.0

End of Document