

Customer	: ESRIN		: IDEAS-VEG-OQC-REP-1048
Contract No WP No	: 21525/08/I-OL : 14500	Issue Date Issue	: 08 May 2012 : 1
WF NO	. 14500	15500	

Title : IDEAS – SMOS Public Monthly Report - April 2012

Abstract : This document provides a summary of the status and performance of SMOS over the course of the reporting month.

Author	:		Accepted :	
		IDEAS SMOS QC Team		R. Crapolicchio on behalf of ESA EOP-GMQ

Distribution

:

 Hard Copy File:

 Filename:
 IDEAS-VEG-OQC-REP-1048_1.doc

Copyright © 2011 VEGA Space Ltd

All rights reserved. No part of this work may be disclosed to any third party translated reproduced copied or disseminated in any form or by any means except as defined in the contract or with the written permission of VEGA Space Ltd.

VEGA Space Ltd 2 Falcon Way, Shire Park, Welwyn Garden City, Herts AL7 1TW, United Kingdom Tel: +44 (0)1707 368 099 Fax: +44 (0)1707 393 909 www.vegaspace.com

VEGA

TABLE OF CONTENTS

1.	EXECUTIVE SUMMARY	5
2. 2.1 2.2	INTRODUCTION Structure of the Document Definitions of Terms	6
3. 3.1 3.2	INSTRUMENT STATUS Instrument health Instrument unavailabilities and anomalies	9
4.1	DATA SUMMARY1Reprocessing activities1Processing changes14.2.1Processor updates14.2.2Processor Status14.2.3Schema updates14.2.4Schema status14.2.5Aux file updates11.2.5Aux file updates11.2.6Aux file updates11.2.7Aux file updates11.2.8Summary11.2.9Data Coverage Summary11.10Summary of degraded data11.2.1Product Quality Disclaimers1	111223456
5. 5.1 5.2	LONG-TERM ANALYSIS 1 Calibration Analysis 1 Product Quality Analysis 2	8
	ADF CONFIGURATION AT THE END OF THE REPORTING PERIOD	

IDEAS-VEG-OQC-REP-1048

Issue 1

AMENDMENT POLICY

IDEAS

This document shall be amended by releasing a new edition of the document in its entirety. The Amendment Record Sheet below records the history and issue status of this document.

AMENDMENT RECORD SHEET

ISSUE	DATE	DCI No	REASON
1	8 May 2012	N/A	First release

This Page is Intentionally Blank

1. **EXECUTIVE SUMMARY**

IDEAS

This is the routine Soil Moisture and Ocean Salinity (SMOS) Monthly Public Report containing a summary of the instrument health, product quality status and, important updates to SMOS processing and AUX files during April 2012.

The instrument health during April was found to be nominal. There were five unavailabilities reported during the reporting period that translate into time intervals with data loss or degraded data. The list of unavailabilities is included in the section 3.2.

The data quality during April was found to be nominal except in the time intervals listed in the section 4.4. The degradation of the data has been induced either by instrument anomalies or by the unavailability of the dynamic auxiliary files.

The nominal data processing has been updated to the L2SM v551 for Level 2 on 24-Apr-2012. The details of the new processor are described in section 4.2.1.

2. INTRODUCTION

2.1 Structure of the Document

After this introduction, the document is divided into a number of major sections that are briefly described below:

1 Executive summary

The executive summary covers the main findings from the report.

2 Introduction

A list of referenced documents and definitions of terms are available.

3 Instrument status

This section covers the instrument health and unavailabilities from this reporting period.

4 Data Summary

This section covers reprocessing, updates to processors and aux files as well as a data coverage summary.

5 Long Term Analysis

Long-term analysis of the instrument calibration and data quality are provided in this section.

2.2 Definitions of Terms

The following terms have been used in this report with the meanings shown.

Term	Definition
CMN	Control and Monitoring Node, responsible for commanding the receivers, reading their physical temperatures and telemetry and the generation of the synchronization signal (local oscillator tone) among receivers.
CCU	Correlator and Control unit, instrument computer on- board
DPGS	Data Processing Ground Segment
ESL	Expert Science Laboratory
IDEAS	Instrument Data quality Evaluation and Analysis Service, reporting to the ESA Data Quality and Algorithms Management Office (EOP-GQ), responsible for quality of data provided to users including the data calibration and validation, the data processing algorithms, and the routine instrument and processing chain performances.
IPF	Instrument Processor Facility

Level 2 Soil Moisture
Orbit Correction Manoeuvre
Power Measurement System
Radio Frequency Interference
Not applicable

This Page is Intentionally Blank

3. INSTRUMENT STATUS

3.1 Instrument health

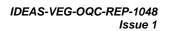
The current instrument status is that all the instrument subsystems are working correctly. The current configuration of the instrument is that the arm A and the arm B are working in nominal side and arm C is in the redundant side.

Start	Stop	Description
11 January 2010 12:07z Orbit 1013	N/A	Arm A changes from redundant to nominal side. That operation is to avoid the malfunction of one of the redundant CMNs of the arm.
12 January 2011 09:15z Orbit 6278	N/A	Arm B changes from redundant to nominal side. That operation is to avoid the malfunction of one of the redundant CMNs of the arm.

Table 3-1History of instrument problems and mode changes

3.2 Instrument unavailabilities and anomalies

The unavailabilities and anomalies listed in Table 3-2 occurred during the reporting period. A full list of unavailabilities can be found in the Mission Status section on the SMOS Earthnet website (<u>http://earth.esa.int/object/index.cfm?fobjectid=7060</u>).


During these unavailabilities and anomalies the instrument may have either not collected data or may have collected corrupt data which may not have been processed to higher levels. Table 4-5, Table 4-6 and Table 4-7 provide details of the data which has been affected by gaps and quality degradation respectively.

Start	Stop	Unavailabili ty Report Reference	Planned	Description
2 April 2012 23:46 Orbit 12704	3 April 2012 00:23 Orbit 12704	FOS-0145	Yes	OCM
7 April 2012 16:25 Orbit 12772	7 April 2012 16:46 Orbit 12772	FOS-0146	Yes	Collision Avoidance Manoeuvre (OCM)

Table 3-2SMOS unavailability list

17 April 2012 22:09	17 April 2012 00:35	FOS-0147	Yes	ОСМ
Orbit 12919	Orbit 12919			
19 April 2012 02:47 Orbit 12936	19 April 2012 02:57 Orbit 12936	FOS-0148	No	CMN Unlock (B3)
01011 12930	0101112930			
27 April 2012 05:19	27 April 2012 05:29	FOS-0149	No	CMN Unlock (B3)
Orbit 13053	Orbit 13053			

4. DATA SUMMARY

4.1 Reprocessing activities

The first SMOS mission reprocessing campaign has been completed and the data set is available to the SMOS user community.

Particularly, the processors used are the Level 1 Processor v504, the Level 2 Ocean Salinity processor v550 and the Level 2 Soil Moisture processor v501. The reprocessed period covers from 12-Jan-2010 to 22-Dec-2011 for the L1 and L2 Sea Surface Salinity data and from 12-Jan-2010 to 28-Nov-2011 for the L2 Soil moisture data.

The improvements and known caveats in the quality of the SMOS Level 1 and Level 2 data products are described in the data release notes available on the ESA web page:

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/news/-/asset_publisher/8pPI/content/re-processed-smos-data-nowavailable?p_r_p_564233524_assetIdentifier=re-processed-smos-data-nowavailable&redirect=%2Fc%2Fportal%2Flayout%3Fp_1_id%3D65665

Data users are strongly encouraged to consult those notes before using SMOS data.

Next reprocessing campaign is actually foreseen by the end of 2012.

4.2 **Processing changes**

4.2.1 Processor updates

The L2 Soil Moisture Processor was transferred into operations on 24-Apr-2012. This processor provides a new dielectric model (Mironov) for the soil moisture retrieval. The processor improvements and other associated information are summarised in the news available in the ESA web page:

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/smos/news/-/asset_publisher/8pPI/content/upgrade-of-l2-soil-moisture-operational-processor-in-smosprocessing-chain?p_r_p_564233524_assetIdentifier=upgrade-of-l2-soil-moistureoperational-processor-in-smos-processingchain&redirect=%2Fc%2Fportal%2Flayout%3Fp_I_id%3D65665

The start sensing time of the first product generated with the new processor baseline is 23/04/2012 at 08:35:17.

4.2.2 Processor Status

At the end of the reporting period, the Processing Facility is using the following processors:

Processor	Version
L10P	504 (L1a/L1b)
	505 (L1c)

Table 4-1 Instrument Processors status

L2OS	550
L2SM	551

Table 4-2 Pr	re- and Post-processors sta	atus
--------------	-----------------------------	------

Processor	Version
ECMWFP	315
VTECGN	309
LAI pre-processor	307
L2 Post-processors	400

4.2.3 Schema updates

No schema changes have been conducted during the reporting period.

4.2.4 Schema status

At the end of the reporting period, the schema version of the datablock of the products generated and distributed through EOLI is:

Product type	Version
MIR_SC_F1B	300
MIR_SCSF1C	300
MIR_SCLF1C	300
MIR_BWSF1C	300
MIR_BWLF1C	300
MIR_SMUDP2	300
MIR_OSUDP2	300
AUX_ECMWF_	300

The schema packages are available from the anonymous ftp site:

ftp://dpgswebserver-1.smos.eo.esa.int/smos/schemas

4.2.5 Aux file updates

The following quasi-static AUX files were disseminated to the processing stations this reporting period. The status of the quasi-static AUX files at the end of the reporting period is in the section 6.

SM_OPER_AUX_CNFSMD_20050101T000000_20500101T000000_001_009010_3

Dissemination date: 2012-04-24 09:57:00z

Start sensing time at L1 processor: N/A

Justification: Configuration file for the L2 SM processor v551. This file contains the parameters for the new dielectric model used by the processor (Mironov model). See SO-CS-ARR-GS-4405 (available at <u>http://smos.array.ca/web/smos/documentation</u>) for the details.

SM_OPER_AUX_CNFSMF_20050101T000000_20500101T000000_001_009010_3

Dissemination date: 2012-04-24 09:57:00z

Start sensing time at L1 processor: 2012-04-23 08:35:17z

Justification: Configuration file for the L2 SM processor v551. This file contains the parameters for the new dielectric model used by the processor (Mironov model). See SO-CS-ARR-GS-4405 (available at <u>http://smos.array.ca/web/smos/documentation</u>) for the details.

SM_OPER_AUX_BULL_B_20120202T000000_20120301T235959_120_001_3

Dissemination date: 2012-04-11 09:02:00z

Start sensing time at L1 processor: N/A

Justification: : Bulletin Update including values from March 2012 and the prediction for April 2012. It is usage is intended for reprocessing.

SM_OPER_AUX_BULL_B_20120202T000000_20500101T000000_120_001_3

Dissemination date: 2012-04-11 09:02:00z

Start sensing time at L1 processor: 2012-04-11 07:01:16z

Justification: Bulletin Update including values from March 2012 and the prediction for April 2012. It is usage is intended for the nominal production.

SM_OPER_AUX_OTT1D__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: N/A

Justification: April update

SM_OPER_AUX_OTT1F__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: 2012-04-19 06:10:51z

Justification: April update

SM_OPER_AUX_OTT2D__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: N/A

Justification: April update

SM_OPER_AUX_OTT2F__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: 2012-04-19 06:10:51z

Justification: April update

SM_OPER_AUX_OTT3D__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: N/A

Justification: April update

SM_OPER_AUX_OTT3F__20120401T000000_20500101T000000_550_001_3

Dissemination date: 2012-04-19 15:17:35z

Start sensing time at L1 processor: 2012-04-19 06:10:51z

Justification: April update

4.3 Calibration Events Summary

The following table summarizes the major calibration activities conducted during the reporting period. The Local Oscillator calibration is not included in the table since occurs periodically every 10 minutes. The short calibration are acquired since 24 March 2011 but only used in the nominal processing chain after the transfer into operations of the processing baseline v500.

Start	Finish	Calibration	Comments
2012-04-05	2012-04-05	Short Calibration	Nominal
15:17:00z	15:18:44z		
2012-04-11	2012-04-11	NIR calibration	Nominal

Table 4-4Calibration summary

03:32:53z	04:55:06z		Brightness temperature: 3.79 K
			RMS: 0.54 K
			Moon elevation: -61.48 deg
			Sun Elevation: 0.23 deg
			Right Ascension: 112.00 deg
			Declination: 21.94 deg
2012-04-12	2012-04-12	Long Calibration	Nominal
01:48:40z	02:42:00z		
2012-04-12	2012-04-12	Long Calibration	Nominal
03:27:40z	04:21:00z		
2012-04-19	2012-04-19	Short Calibration	Nominal
14:32:44z	14:34:28z		
2012-04-25	2012-04-25	NIR Calibration	Nominal
02:54:53z	04:17:06z		Brightness temperature: 3.80 K
			RMS: 0.54 K
			Moon elevation: 36.90 deg
			Sun Elevation: -0.76 deg
			Right Ascension: 122.93 deg
			Declination: -2.98 deg
2012-04-26	2012-04-26	Short Calibration	Nominal
14:59:00z	15:00:44z		

4.4 Data Coverage Summary

Where instrument unavailabilities or anomalies have occurred during this reporting period, gaps in data coverage may have occurred. A list of the gaps due to a permanent data loss is given in Table 4-5 by product level. On the other hand, a list of gaps due to operational problems is given in Table 4-6. The latter gaps may be recovered when the problem is fixed.

The science data gaps due to the execution of calibration activities are not listed in this section.

Start	Finish	Data Level	Comments
2 April 2012 23:46 Orbit 12704	3 April 2012 00:23 Orbit 12704	L0 Nominal & NRT Production and higher levels	OCM (FOS-145)
7 April 2012 16:25 Orbit 12772	7 April 2012 16:46 Orbit 12772	L0 Nominal & NRT Production and higher levels	Collision Avoidance Manoeuvre (OCM) (FOS- 146)
17 April 2012 22:09 Orbit 12919	17 April 2012 00:35 Orbit 12919	L0 Nominal & NRT Production and higher levels	OCM (FOS-147)

Table 4-5 Data loss summary

Table 4-6 C

Operational gaps summary

Start	Finish	Data Level	Comments
08:55	29 April 2012 09:45	L1 & L2 Production	Gap in the data acquisition that was recovered in the next acquisition. Data
Orbit 13084	Orbit 13084		pending to be processed.

4.5 Summary of degraded data

In April 2012, SMOS data was affected by the following instrument and processing anomalies which have had a detrimental effect on the data quality.

The CMN unlocks produced short intervals (10 min) of degraded data.

Start	Finish	Affected products	Problem Description
18/03/2012 00:00 Orbit 12474	20/03/2012 10:38 Orbit 12509	L1C and L2 products	The auxiliary file with the prediction of the lonespheric Electron Content has not been updated during this period. The last available prediction has been used instead. The affected products are flagged with the ADF error

Table 4-7 Summary of degraded data

			flag.
19 April 2012 02:47	19 April 2012 02:57	L1 and L2 products	CMN unlock (FOS-0148)
Orbit 12936	Orbit 12936		
27 April 2012 05:19	27 April 2012 05:29	L1 and L2 products	CMN unlock (FOS-0149)
Orbit 13053	Orbit 13053		

4.6 **Product Quality Disclaimers**

The following product disclaimers affects the data generated in the reporting period:

Date	
21 March 2012	Due to a software anomaly in the L1OP V5.04 and V5.05 processor, the Sun Glint Flag available in the L1c Product is not correctly set. This flag aims to indicate measurements affected by Sun glint over ocean. The major impact of this anomaly is on the users who are using L1c data to retrieve Sea Surface Salinity. Those users need to discard the information provided by the Sun glint flag in their retrieval algorithms. This anomaly does not impact the ESA Level 2 Ocean salinity product because the Sun glint flag from L1c input data is not used by the retrieval algorithm. Information on Sun glint are directly computed by the L2 processor and used for the retrieval of the Sea Surface Salinity

 Table 4-8
 Summary of product quality disclaimers

5. LONG-TERM ANALYSIS

5.1 Calibration Analysis

The calibration parameters are under monitoring. During the reporting period, there have been NIR calibrations events on 11th and 25th April. The NIR calibration events have been monitored and the noise injection levels of the NIR diodes are inside the range defined in the routine calibration plan.

With the NIR calibration on 25th April a new calibration sequences has been executed on-board to improve the PMS calibration by using deep sky measurements. This new calibration technique is currently under study by the Calibration team. Preliminary results are quite good showing improvements in the PMS calibration stability. Once approved by the quality working group this new PMS calibration will be implemented in the operational ground segment.

Also, a long calibration event has been conducted on 12th April to calibrate the PMS parameters, the correlator offsets and to monitor the Fringe Washing Function (FWF) shape. All these parameters are in the range specified by the routine calibration plan and therefore new PMS and correlator offset parameters have been used in the operational ground segment as per routine calibration plan.

The calibration on 25th April has also produced an additional set of correlator offset parameters that has been used in the operational ground segment. The differences between using the visibility offset correction from the long calibration on 12th April and the NIR calibration on 25th April have been assessed on a snapshot over the Pacific Ocean. The differences in X and Y polarization are in average 0.02 K with a maximum of 0.4 K (see Figure 1). On the other hand, the 3rd Stokes parameter presents a 0.006 K average difference with a maximum of 0.3 K (see Figure 2). The 4th Stokes presents 0.01 K average difference with a maximum of 0.3 K (see Figure 3).

No major anomalies have been detected in the reporting period.

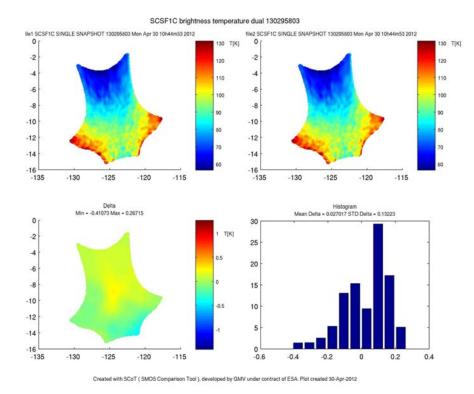


Figure 1 Differences in H-pol between using visibility offset correction from Long Calibration and NIR calibration (top left: snapshot computed using the Long Calibration visibility offsets, top right: snapshot computed using the NIR Calibration visibility offsets, bottom left: difference between the snapshots computed using the Long and NIR calibration, bottom right: statistics on the difference)

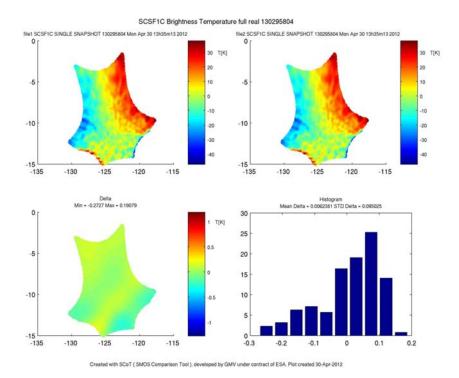


Figure 2 Differences in 3rd Stokes between using visibility offset correction from Long Calibration and NIR calibration (top left: snapshot computed using the Long Calibration visibility offsets, top right: snapshot computed using the NIR Calibration visibility offsets, bottom left: difference between the snapshots computed using the Long and NIR calibration, bottom right: statistics on the difference)

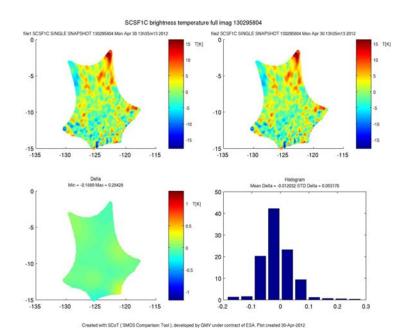


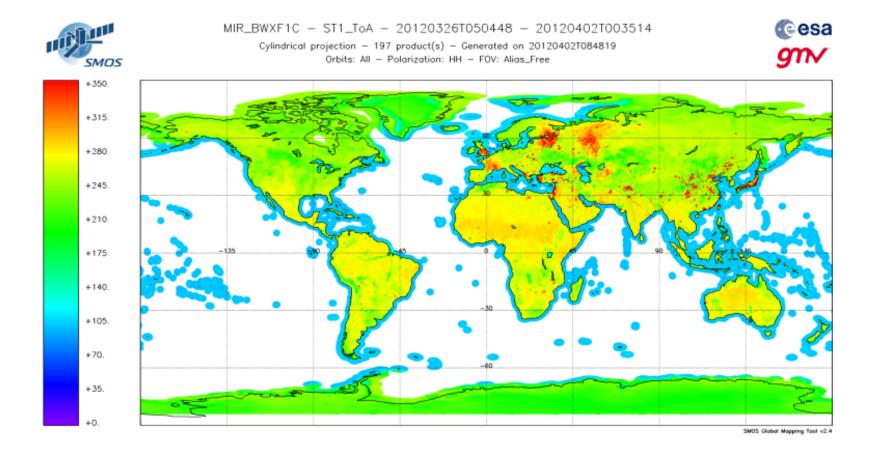
Figure 3 Differences in 4th Stokes between using visibility offset correction from Long Calibration and NIR calibration (top left: snapshot computed using the Long Calibration visibility offsets, top right: snapshot computed using the NIR

Calibration visibility offsets, bottom left: difference between the snapshots computed using the Long and NIR calibration, bottom right: statistics on the difference)

5.2 **Product Quality Analysis**

IDEAS

The data quality in the reporting period is nominal.


The L1 production is nominal as no artefacts are observed in the Stokes maps in Figure 4 to Figure 39. The figures plot the Stokes parameter computed at 42.5 deg from the L1C Browse products. All the artificial patterns in the images can be explained by the presence of RFIs. The impact of the RFI in the brightness temperature measurements over land can be observed mainly in Europe and Asia.

The L2 Soil Moisture and Ocean Salinity production is nominal in the reporting period. Figure 46 shows the evolution of the soil moisture retrievals. Those values present significant differences with the Volumetric Soil Water at L1 (see Figure 47) provided by ECMWF, mainly for the ascending passes. The Level 2 ESL has pointed out that the possible cause is that the predicted precipitation event might not actually occur. An important lack of soil moisture retrievals in the selected area that are polluted by the presence of RFI and frozen soil that do not allow soil moisture retrieval. For more detail on Soil Moisture retrieval algorithm see the L2 Soil Moisture Algorithm Theoretical Baseline Document:

(https://earth.esa.int/c/document_library/get_file?folderId=127856&name=DLFE-506.pdf).

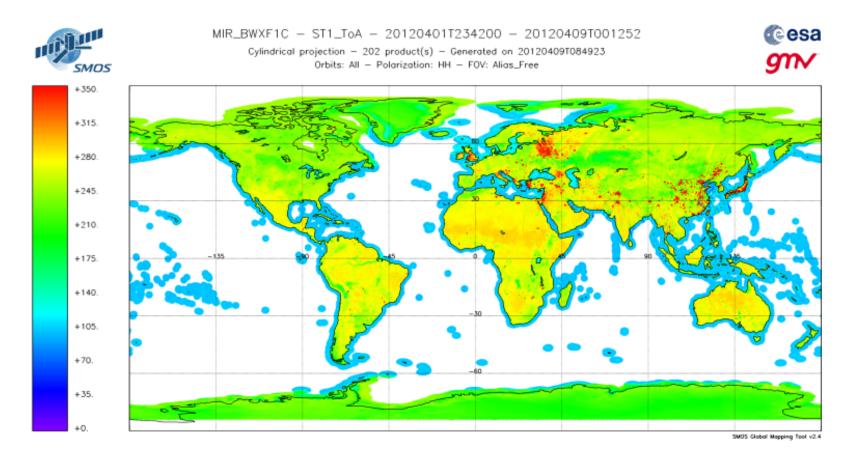
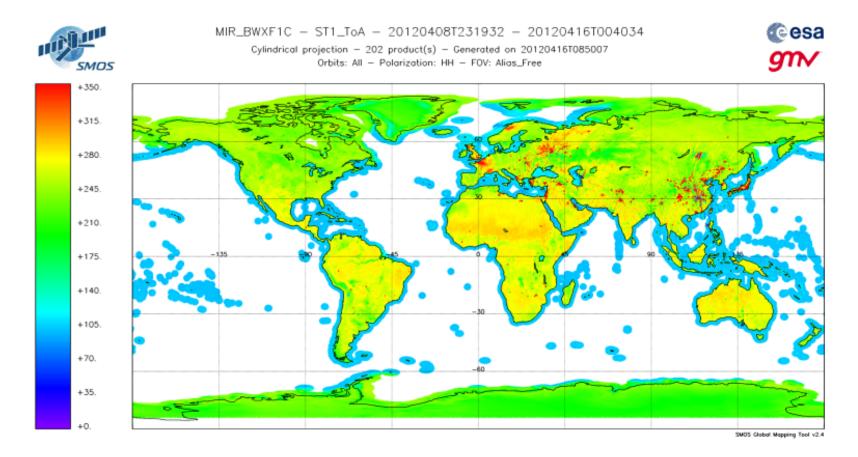


Figure 4 1st Stokes evolution over land during the reporting period (week 13)


IDEAS SMOS Public Monthly Report - April 2012

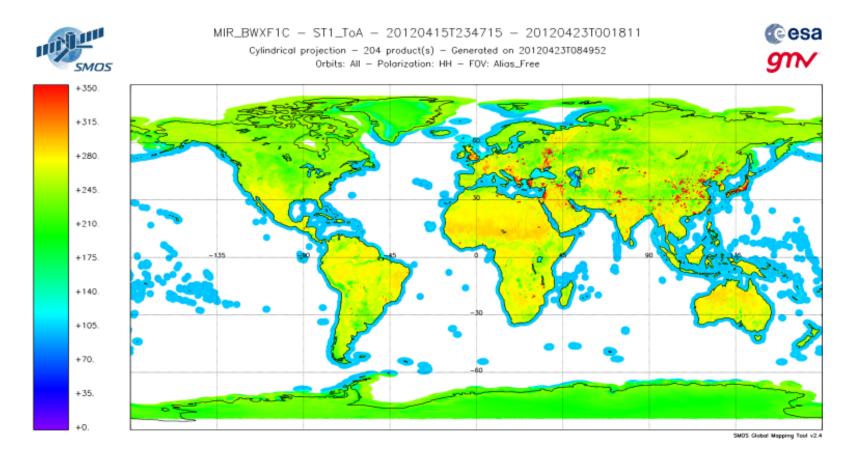

Figure 5 1st Stokes evolution over land during the reporting period (week 14)

Figure 6 1st Stokes evolution over land during the reporting period (week 15)

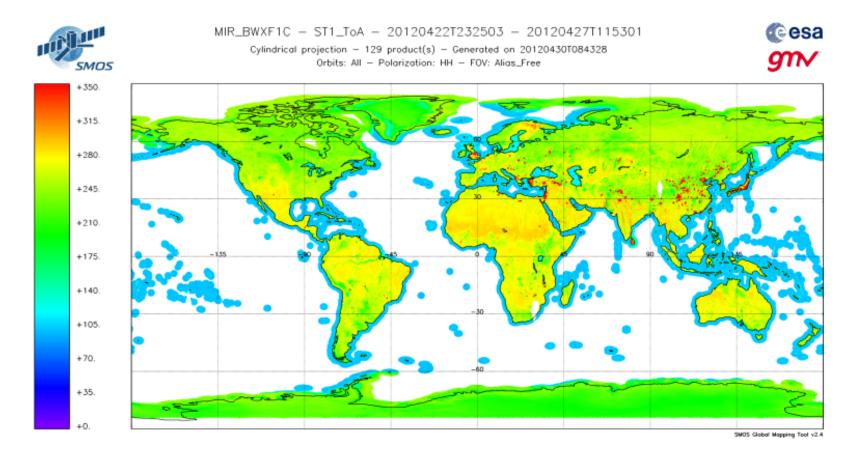

IDEAS SMOS Public Monthly Report - April 2012

Figure 7 1st Stokes evolution over land during the reporting period (week 16)

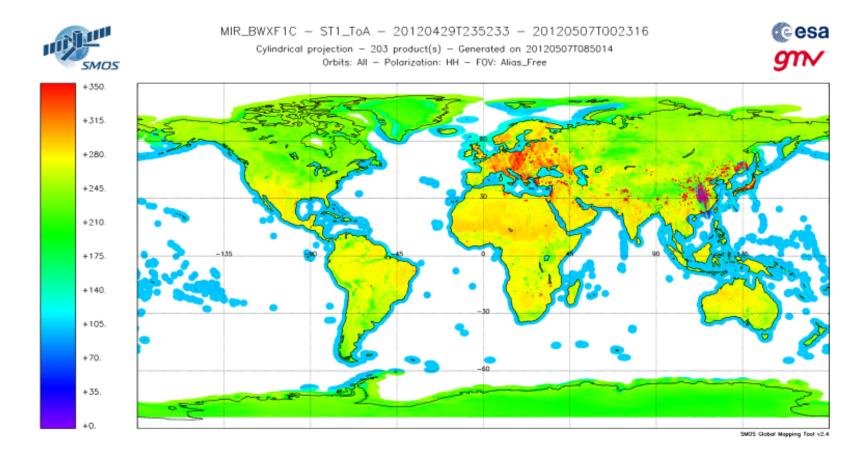


Figure 8 1st Stokes evolution over land during the reporting period (week 17)

Figure 9 1st Stokes evolution over land during the reporting period (week 18)

Figure 10 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 13)

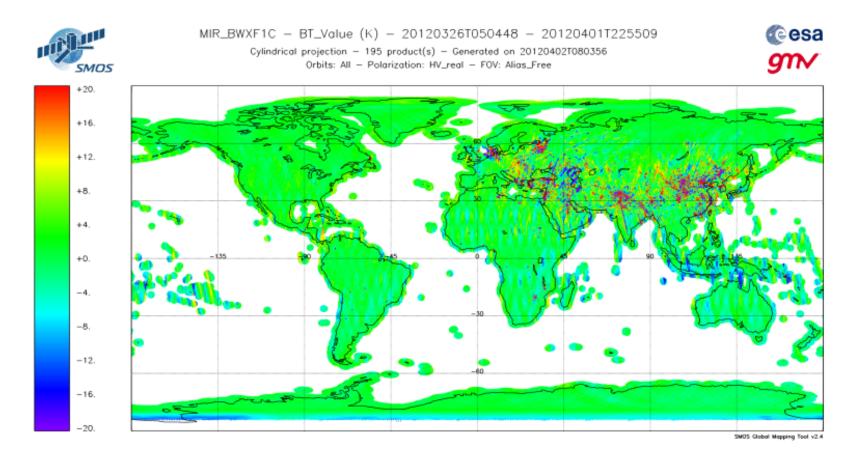
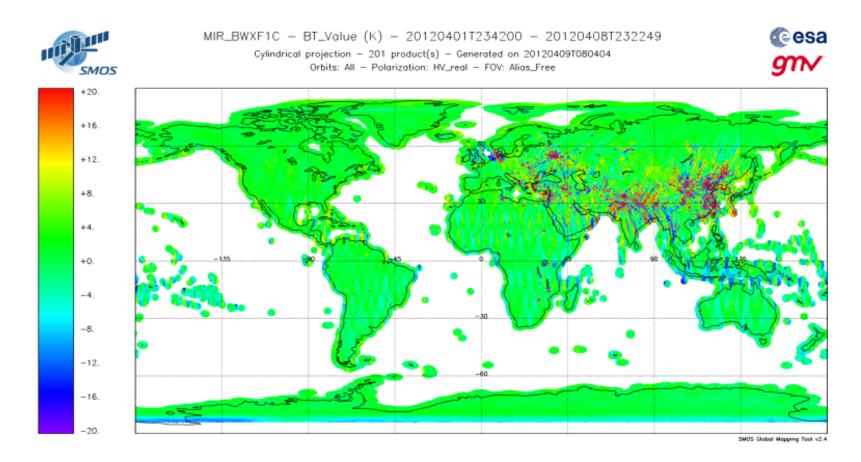
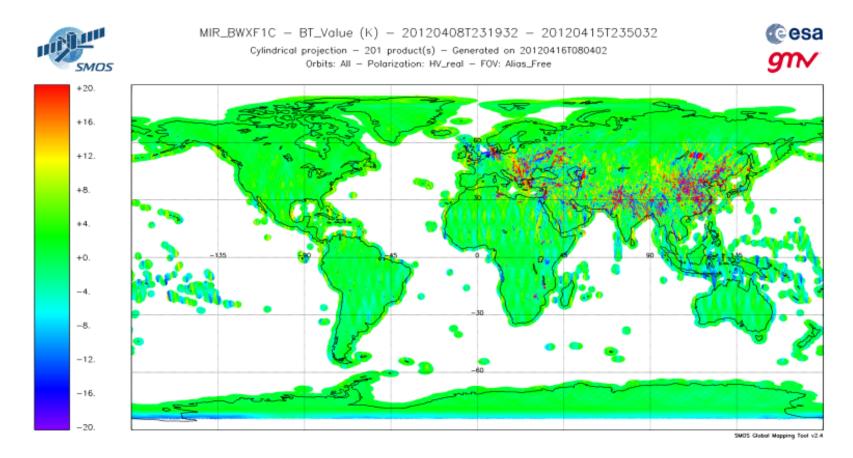
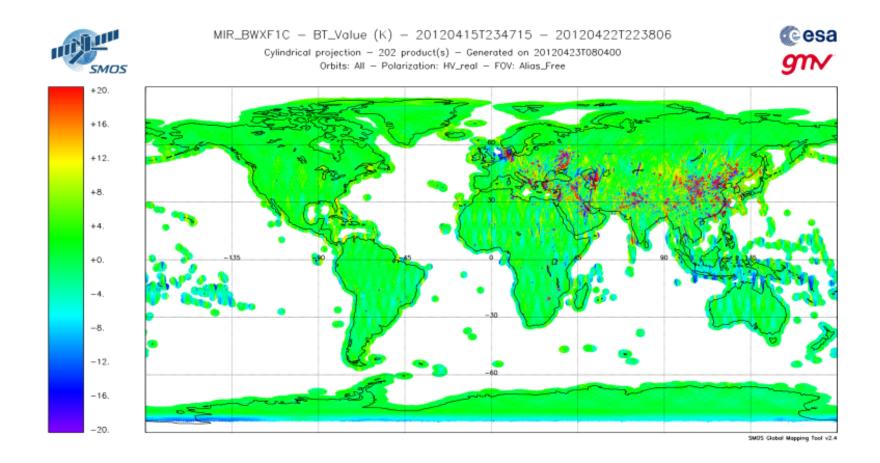



Figure 11 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 14)

Figure 12 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 15)

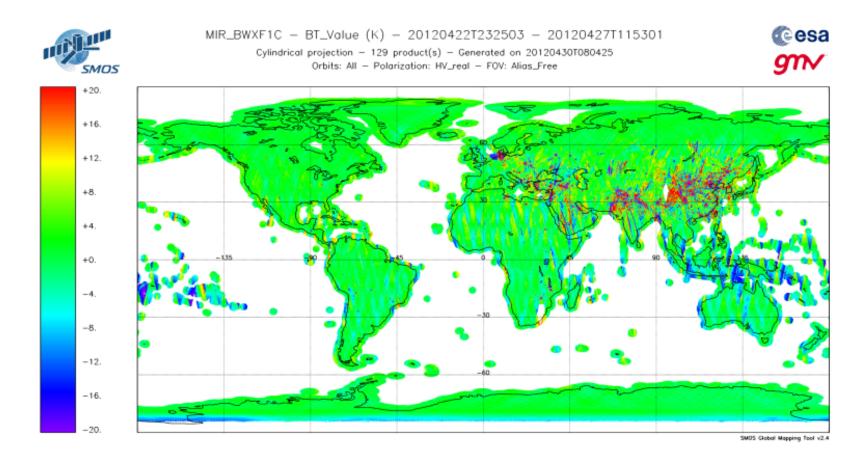


Figure 13 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 16)

Figure 14 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 17)

Figure 15 Real Part of the XY Brightness temperature evolution over land during the reporting period (week 18)

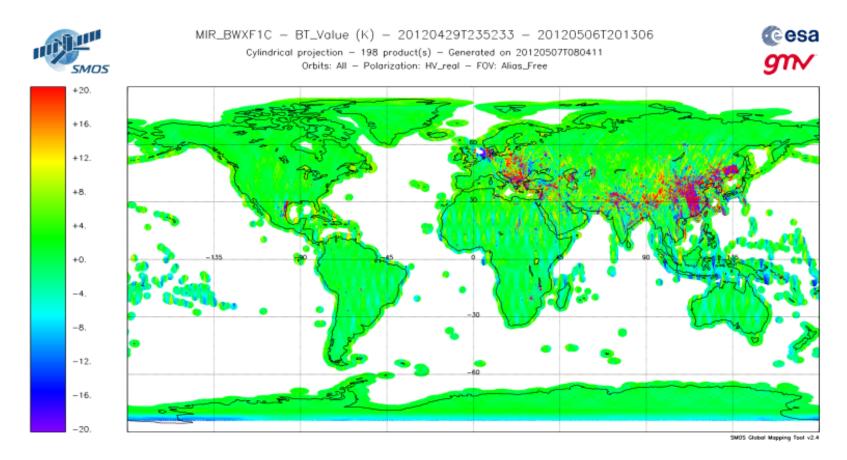


Figure 16 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 13)

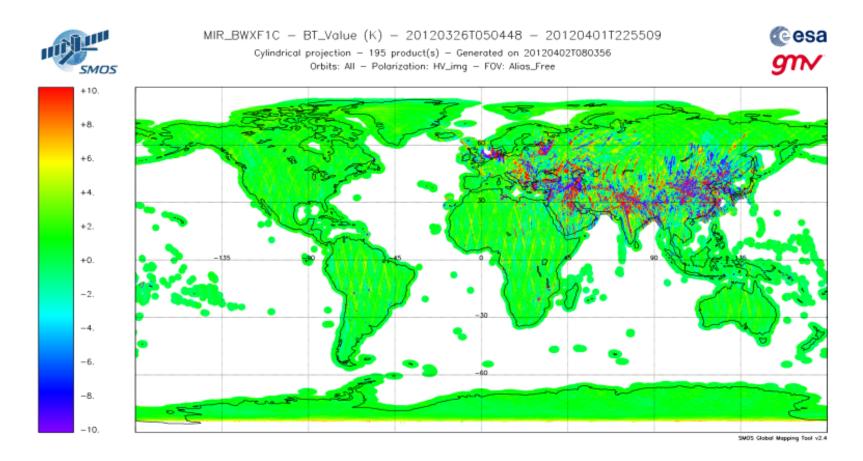
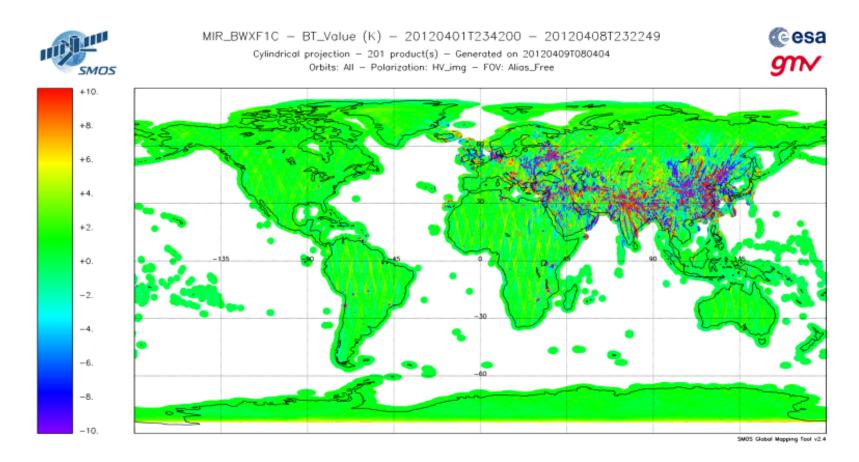
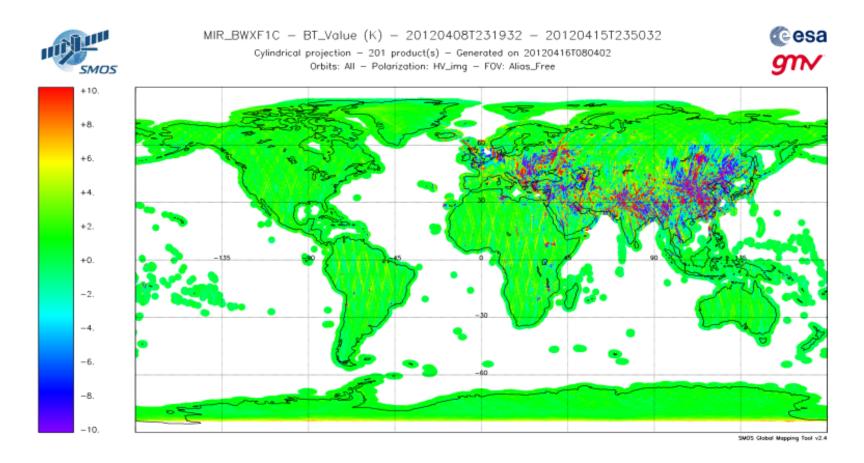
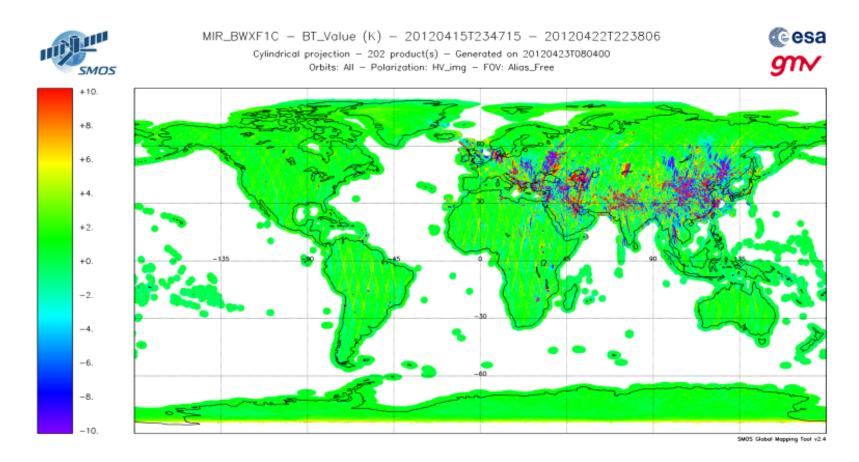



Figure 17 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 14)

Figure 18 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 15)

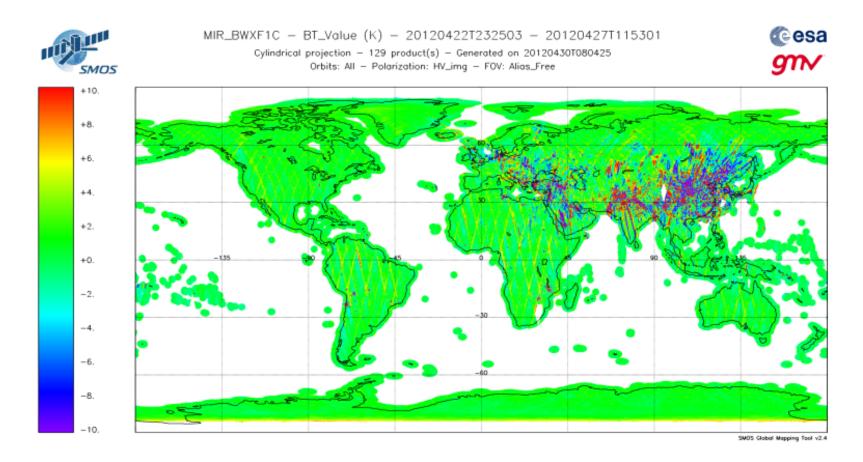


Figure 19 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 16)

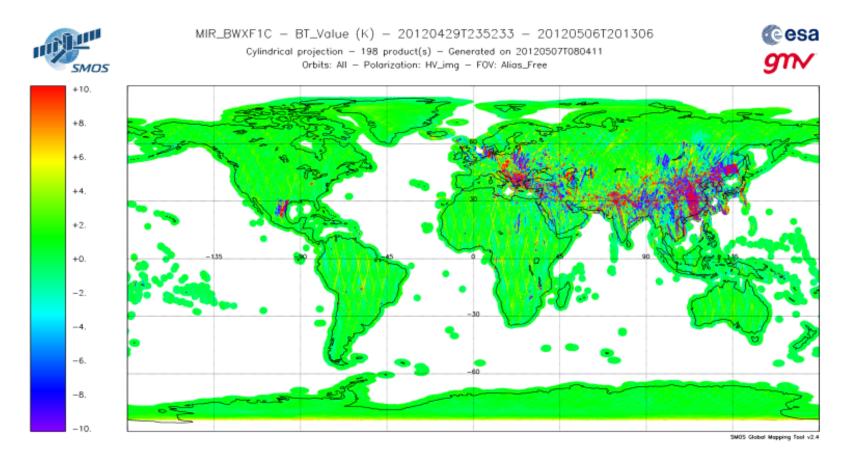


Figure 20 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 17)

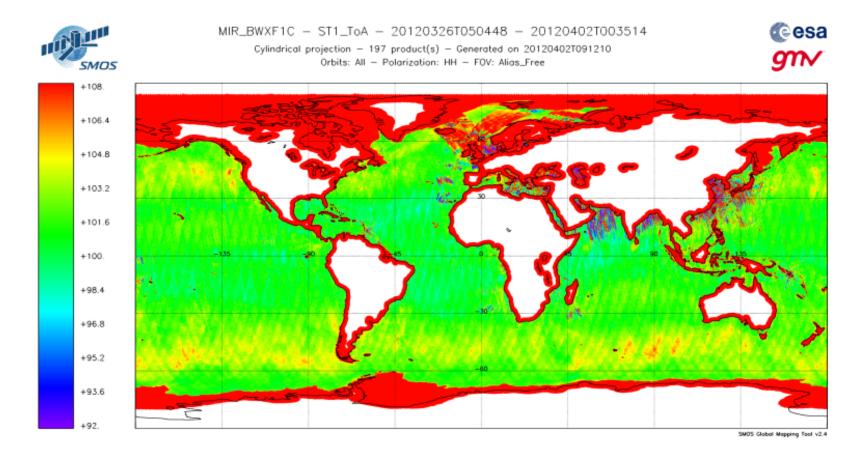


Figure 21 Imaginary Part of the XY Brightness temperature evolution over land during the reporting period (week 18)

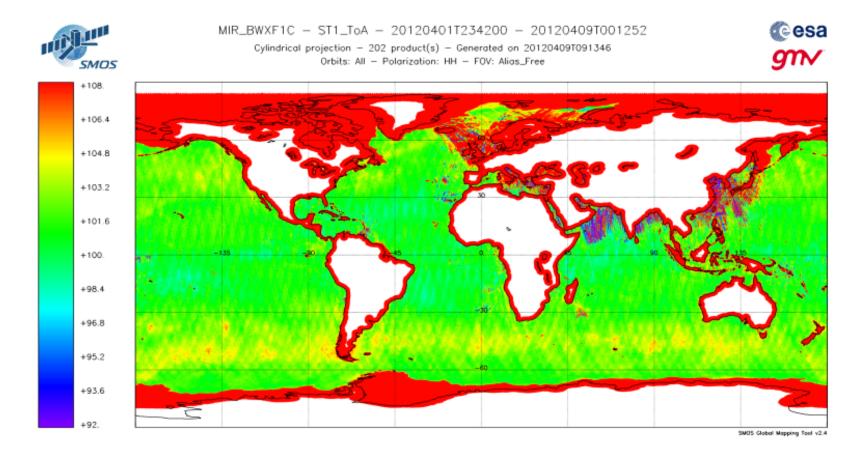


Figure 22 1st Stokes evolution over sea during the reporting period (week 13)

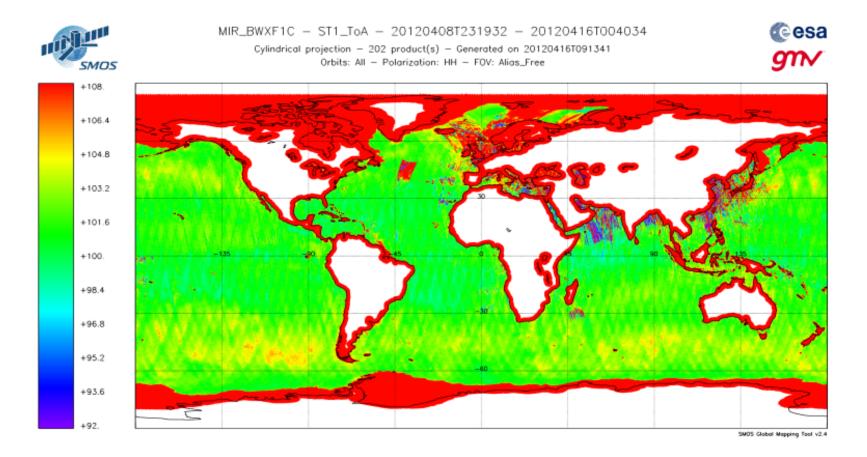


Figure 23 1st Stokes evolution over sea during the reporting period (week 14)

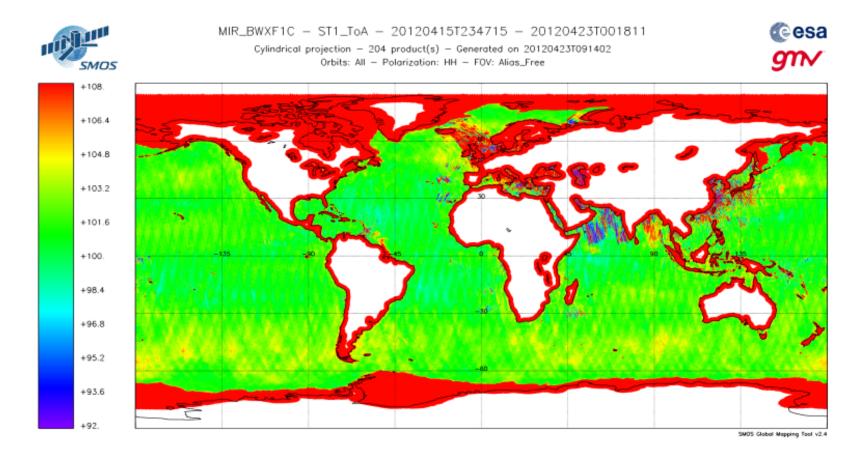


Figure 24 1st Stokes evolution over sea during the reporting period (week 15)

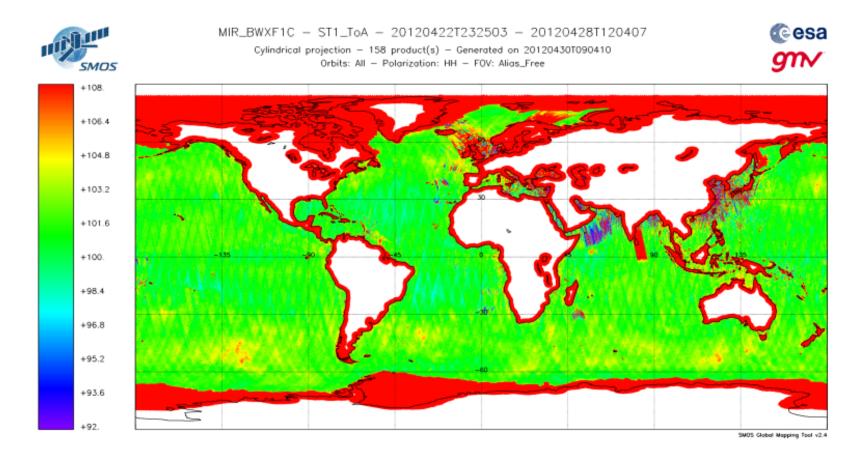


Figure 25 1st Stokes evolution over sea during the reporting period (week 16)

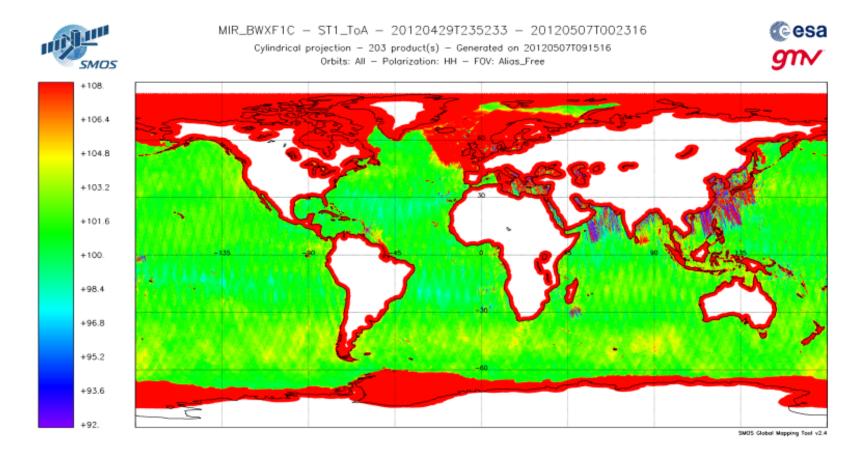


Figure 26 1st Stokes evolution over sea during the reporting period (week 17)

Figure 27 1st Stokes evolution over sea during the reporting period (week 18)

Figure 28 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 13)

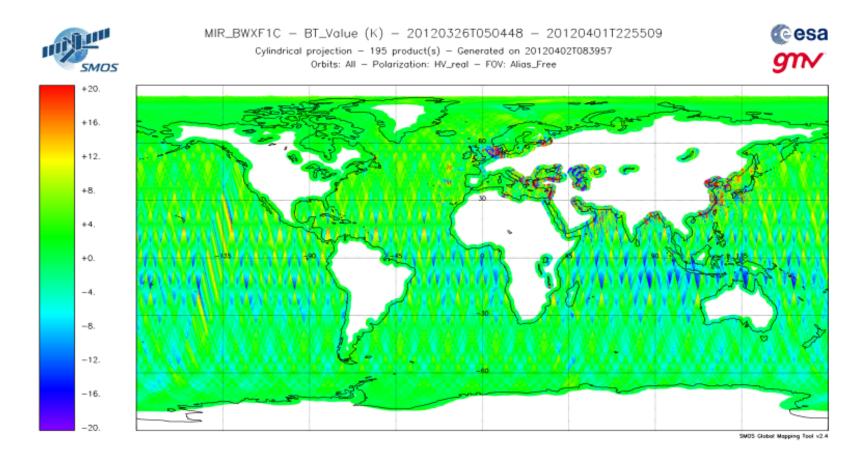
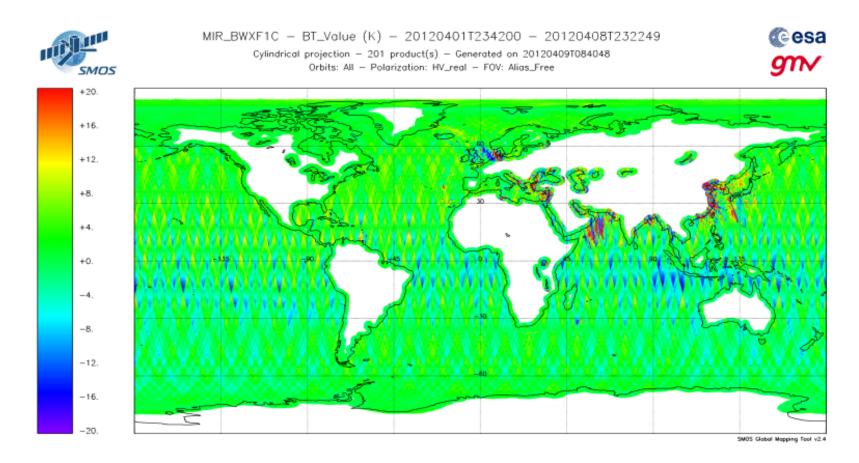



Figure 29 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 14)

Figure 30 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 15)

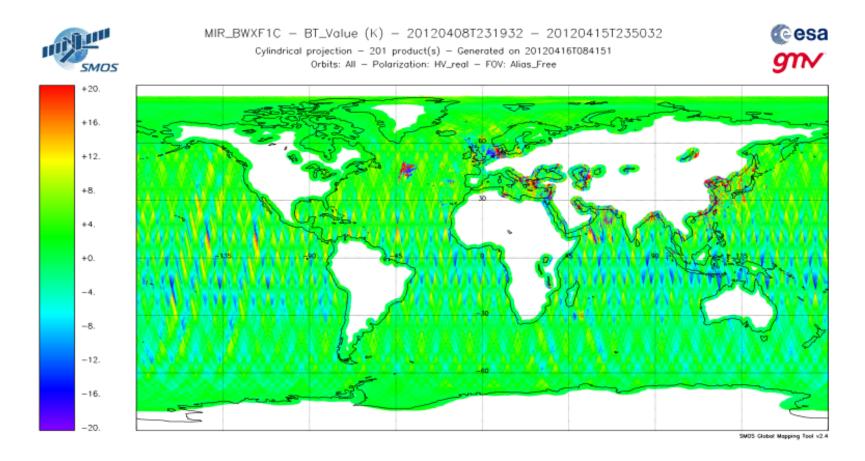
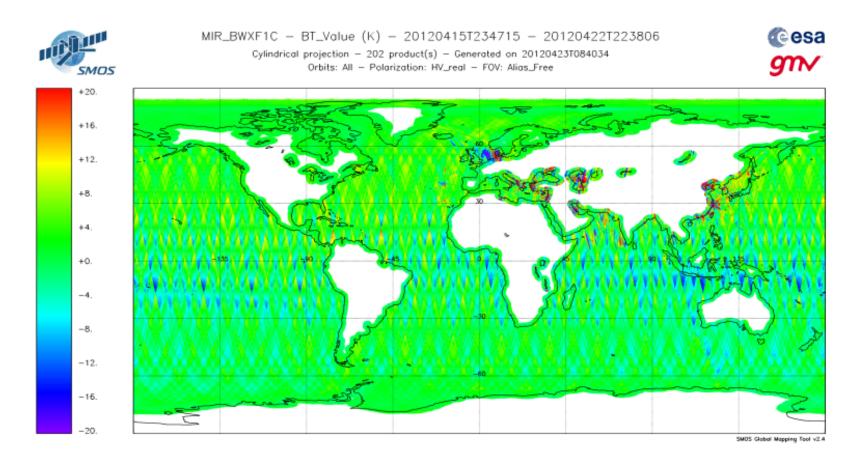



Figure 31 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 16)

Figure 32 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 17)

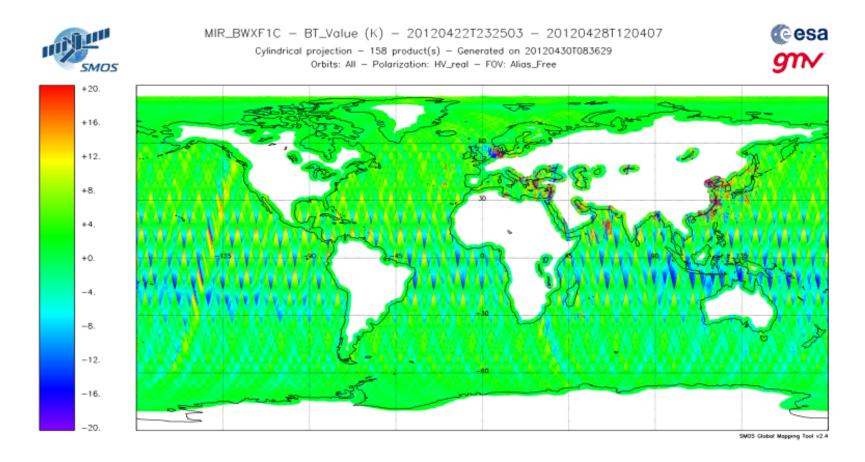
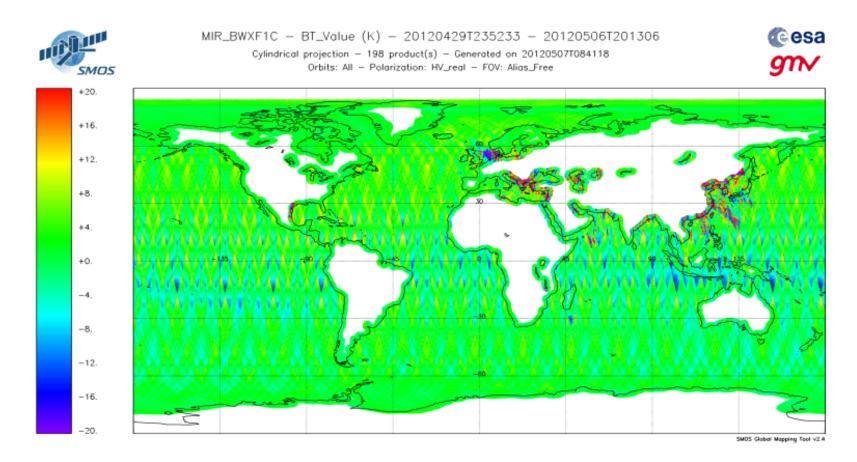



Figure 33 Real Part of the XY Brightness temperature evolution over sea during the reporting period (week 18)

Figure 34 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 13)

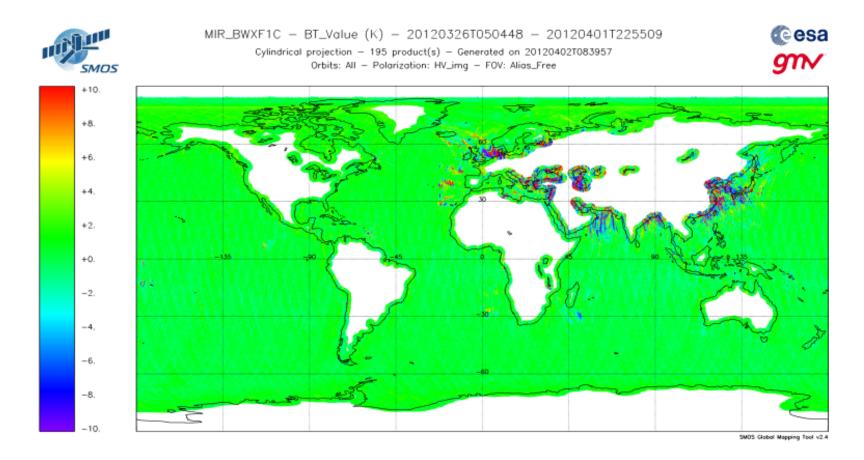
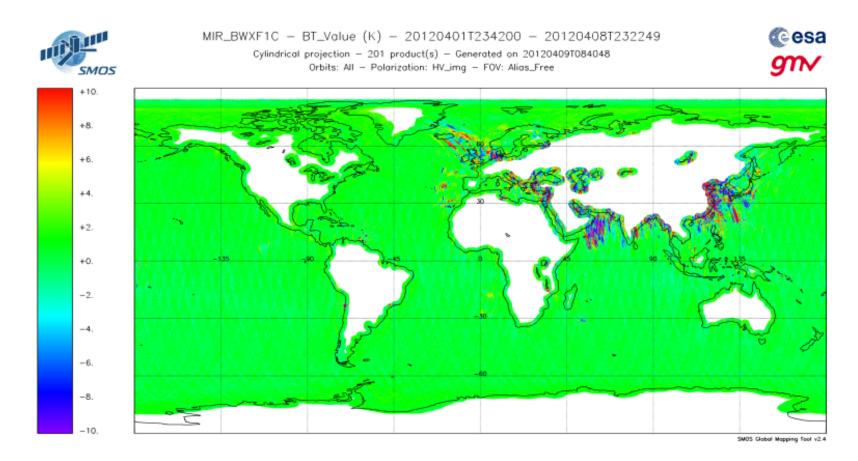
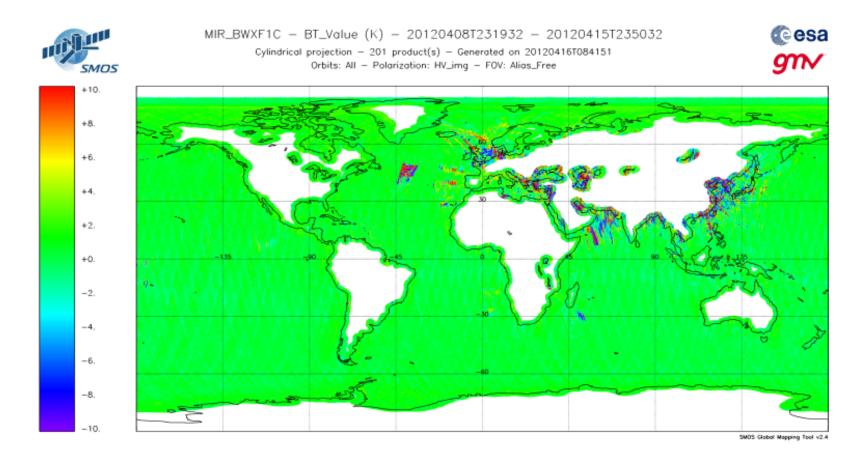
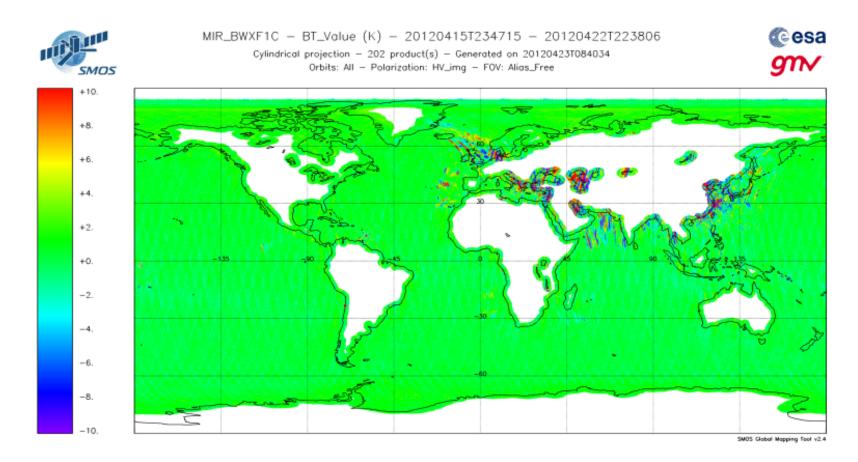



Figure 35 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 14)

Figure 36 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 15)

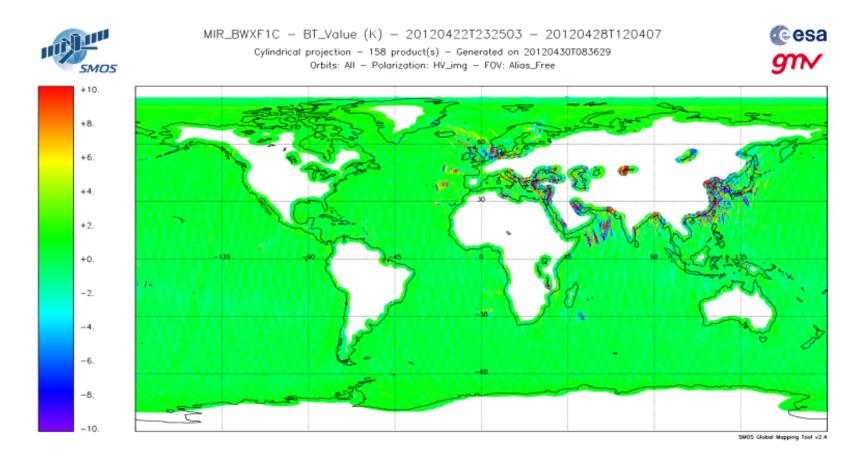


Figure 37 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 16)

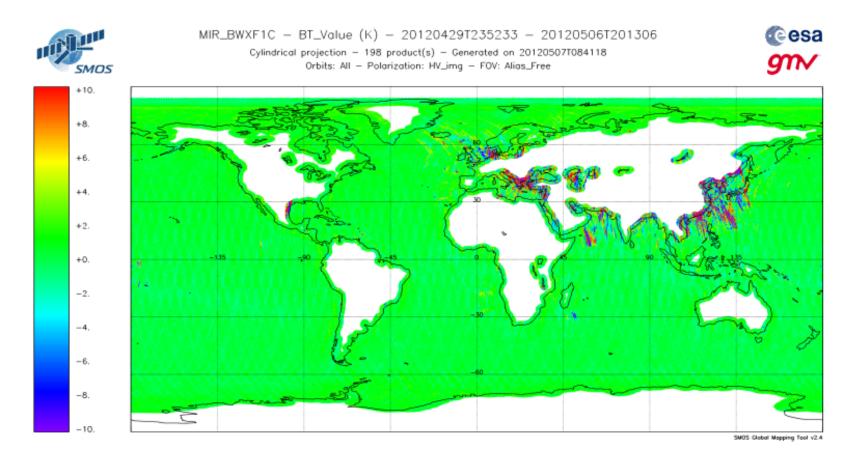


Figure 38 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 17)

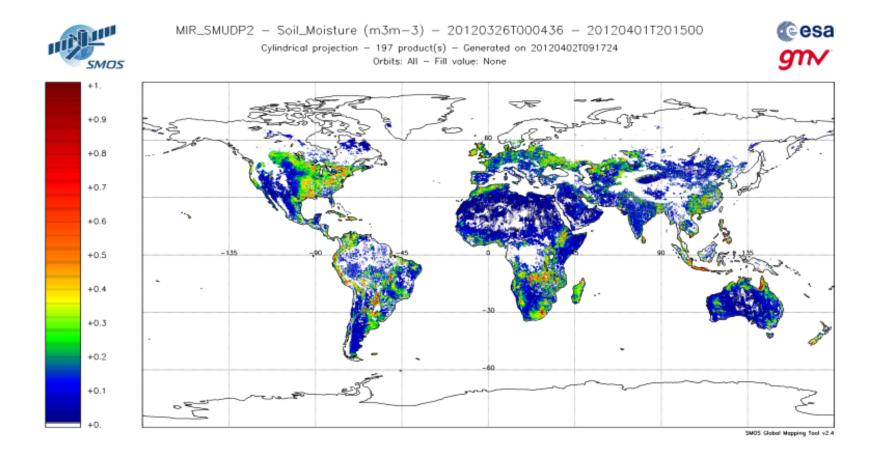
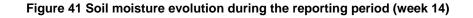


Figure 39 Imaginary Part of the XY Brightness temperature evolution over sea during the reporting period (week 18)



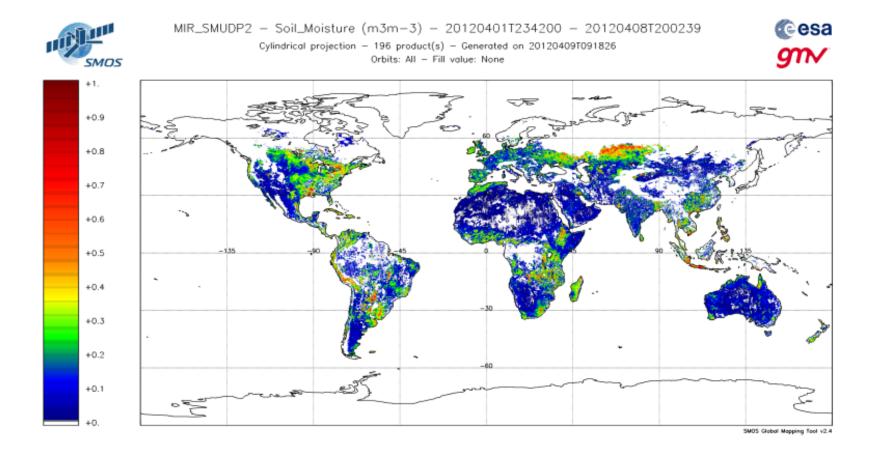
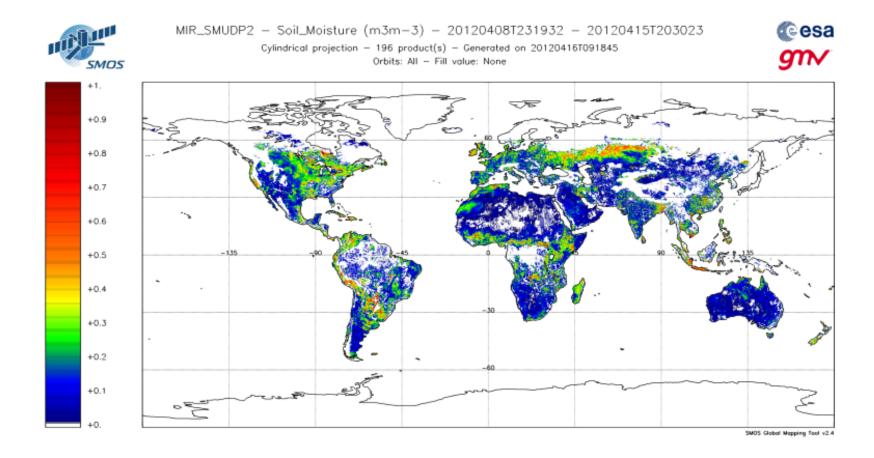


Figure 40 Soil moisture evolution during the reporting period (week 13)



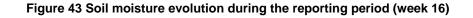
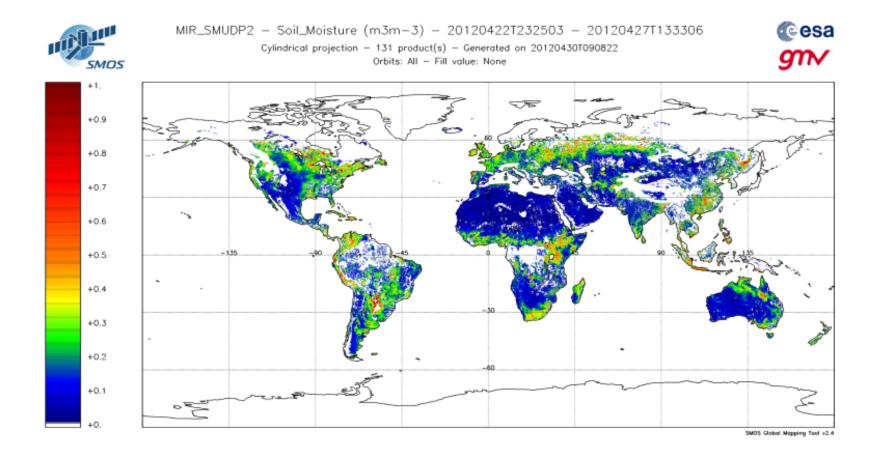




Figure 42 Soil moisture evolution during the reporting period (week 15)



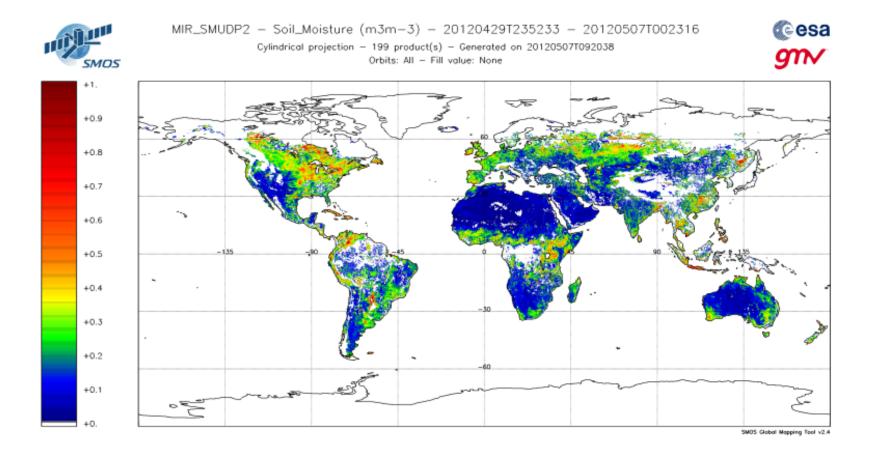


Figure 44 Soil moisture evolution during the reporting period (week 17)

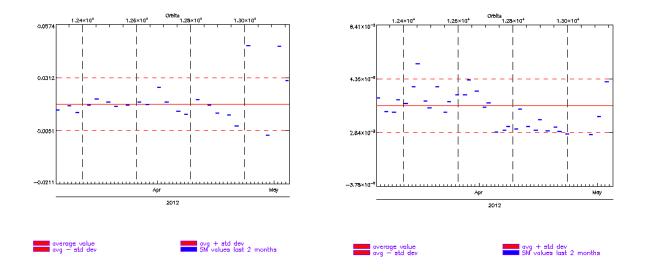


Figure 45 Soil moisture evolution during the reporting period (week 18)

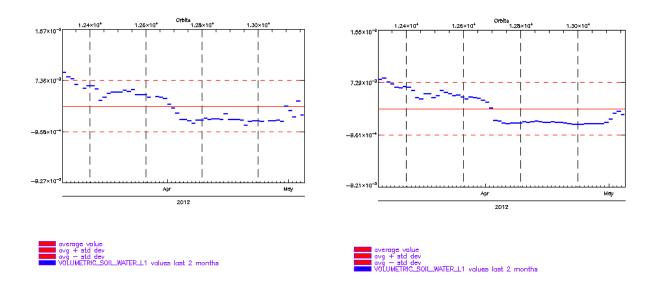


Figure 46 Soil moisture on Taklamakan desert during the reporting period: SM in ascending passes (left) and SM in descending passes (right)

Figure 47 Volumetric Soil Water L1 provided by ECMWF on Taklamakan desert during the reporting period: ascending passes (left) and descending passes (right)

6. ADF CONFIGURATION AT THE END OF THE REPORTING PERIOD

ADF File Type	Operational ADF Version (DPGS Baseline)	Update d
AUX_APDL	SM_OPER_AUX_APDL20050101T000000_20500101T000000_300_002_3.EEF	No
AUX_APDNRT	SM_OPER_AUX_APDNRT_20050101T000000_20500101T000000_207_001_6.EEF	No
AUX_APDS	SM_OPER_AUX_APDS20050101T000000_20500101T000000_300_002_3.EEF	No
AUX_ATMOS_	SM_OPER_AUX_ATMOS20050101T000000_20500101T000000_001_010_8.EEF	No
AUX_BFP	SM_OPER_AUX_BFP20050101T000000_20500101T000000_340_003_3.EEF	No
AUX_BNDLST	SM_OPER_AUX_BNDLST_20050101T000000_20500101T000000_300_001_3	No
AUX_BSCAT_	SM_OPER_AUX_BSCAT20050101T000000_20500101T000000_300_003_3	No
AUX_BWGHT_	SM_OPER_AUX_BWGHT20050101T000000_20500101T000000_340_005_3.EEF	No
AUX_CNFFAR	SM_OPER_AUX_CNFFAR_20050101T000000_20500101T000000_100_002_3.EEF	No
AUX_CNFL0P	SM_OPER_AUX_CNFL0P_20050101T000000_20500101T000000_001_005_3.EEF	No
AUX_CNFL1P	SM_OPER_AUX_CNFL1P_20110206T010100_20500101T000000_500_037_3.EEF	No
AUX_CNFNRT	SM_OPER_AUX_CNFNRT_20050101T000000_20500101T000000_505_009_3.EEF	No
AUX_CNFOSD	SM_OPER_AUX_CNFOSD_20050101T000000_20500101T000000_001_021_3.EEF	No
AUX CNFOSF	SM_OPER_AUX_CNFOSF_20050101T000000_20500101T000000_001_021_3.EEF	No
AUX CNFSMD	SM_OPER_AUX_CNFSMD_20050101T000000_20500101T000000_001_010_3.EEF	Yes
AUX_CNFSMF	SM_OPER_AUX_CNFSMF_20050101T000000_20500101T000000_001_010_3.EEF	Yes
AUX DFFFRA	SM OPER AUX DFFFRA 20050101T000000 20500101T000000 001 004 3	No
AUX DFFLMX	SM OPER AUX DFFLMX 20050101T000000 20500101T000000 001 005 3	No
AUX DFFXYZ	SM_OPER_AUX_DFFXYZ_20050101T000000_20500101T000000_001_003_3	No
AUX DGG	SM OPER AUX DGG 200501011000000 205001011000000 300 002 4	No
AUX DGGXYZ	SM OPER AUX DGGXYZ 200501011000000 205001011000000 001 004 3	No
AUX_DISTAN	SM OPER AUX DISTAN 200501011000000 205001011000000 001 011 3	No
AUX ECOLAI	SM OPER AUX ECOLAI 200501011000000 205001011000000 305 006 3	No
AUX ECMCDF	SM_OPER_AUX_ECMCDF_20101109T000000_205001011000000_001_001_3.EEF	No
AUX_FAIL	SM_OPER_AUX_FAIL20050101T000000_205001011000000_300_003_3.EEF	No
AUX_FLTSEA	SM_OPER_AUX_FLTSEA_20050101T000000_20500101T000000_001_010_8.EEF	No
AUX FOAM	SM_OPER_AUX_FOAM20050101T000000_20500101T000000_001_011_3	No
AUX GAL OS	SM_OPER_AUX_GAL_OS_20050101T000000_20500101T000000_001_010_8	No
AUX_GAL_SM	SM_OPER_AUX_GAL_SM_20050101T000000_20500101T000000_001_002_3	No
AUX GAL2OS	SM_OPER_AUX_GAL2OS_20050101T000000_20500101T000000_001_014_3	No
AUX GALAXY	SM_OPER_AUX_GALAXY_20050101T000000_20500101T000000_300_003_3	No
AUX GALNIR	SM_OPER_AUX_GALNIR_20050101T000000_20500101T000000_300_002_3	No
AUX LANDCL	SM OPER AUX LANDCL 20050101T000000 20500101T000000 001 003 3.EEF	No
AUX LCF	SM_OPER_AUX_LCF20050101T000000_20500101T000000_500_013_3	No
AUX LSMASK	SM_OPER_AUX_LSMASK_20050101T000000_20500101T000000_300_003_3	No
AUX_MASK	SM_OPER_AUX_MASK20050101T000000_20500101T000000_300_002_3	No
AUX_MISP	SM_OPER_AUX_MISP20050101T000000_20500101T000000_300_003_3.EEF	No
AUX_MN_WEF	SM_OPER_AUX_MN_WEF_20050101T000000_20500101T000000_001_002_3	No
AUX MOONT	SM_OPER_AUX_MOONT20050101T000000_20500101T000000_300_002_3	No
AUX_N256	SM_OPER_AUX_N25620050101T000000_20500101T000000_504_001_3	No
AUX NIR	SM_OPER_AUX_NIR20050101T000000_20500101T000000_500_007_3	No
AUX NRTMSK	SM OPER AUX NRTMSK 20050101T000000 20500101T000000 207 001 6	No
AUX_OTT1D_	SM_OPER_AUX_OTT1D_20120401T000000_20500101T000000_550_001_3	Yes
AUX OTT1F	SM_OPER_AUX_OTT1F20120401T000000_20500101T000000_550_001_3	Yes

AUX_OTT2D_	SM_OPER_AUX_OTT2D20120401T000000_20500101T000000_550_001_3	Yes
AUX_OTT2F_	SM_OPER_AUX_OTT2F20120401T000000_20500101T000000_550_001_3	Yes
AUX_OTT3D_	SM_OPER_AUX_OTT3D20120401T000000_20500101T000000_550_001_3	Yes
AUX_OTT3F_	SM_OPER_AUX_OTT3F20120401T000000_20500101T000000_550_001_3	Yes
AUX_PATT	SM_OPER_AUX_PATT20050101T000000_20500101T000000_320_003_3	No
AUX_PLM	SM_OPER_AUX_PLM20050101T000000_20500101T000000_300_007_3.EEF	No
AUX_PMS	SM_OPER_AUX_PMS20050101T000000_20500101T000000_340_010_3.EEF	No
AUX_RFI	SM_OPER_AUX_RFI20050101T000000_20500101T000000_300_003_3	No
AUX_RFILST	SM_OPER_AUX_RFILST_20050101T000000_20500101T000000_001_004_3.EEF	No
AUX_RGHNS1	SM_OPER_AUX_RGHNS1_20050101T000000_20500101T000000_001_015_3	No
AUX_RGHNS2	SM_OPER_AUX_RGHNS2_20050101T000000_20500101T000000_001_013_3	No
AUX_RGHNS3	SM_OPER_AUX_RGHNS3_20050101T000000_20500101T000000_001_013_3	No
AUX_SGLINT	SM_OPER_AUX_SGLINT_20050101T000000_20500101T000000_001_011_3	No
AUX_SOIL_P	SM_OPER_AUX_SOIL_P_20050101T000000_20500101T000000_001_002_3	No
AUX_SPAR	SM_OPER_AUX_SPAR20110112T091500_20500101T000000_340_006_3.EEF	No
AUX_SSS	SM_OPER_AUX_SSS20050101T000000_20500101T000000_001_013_3	No
AUX_SUNT	SM_OPER_AUX_SUNT20050101T000000_20500101T000000_300_002_3	No
AUX_WEF	SM_OPER_AUX_WEF20050101T000000_20500101T000000_001_003_3	No
MPL_ORBSCT	SM_OPER_MPL_ORBSCT_20091102T031142_20500101T000000_350_003_1	No

APPENDIX A. CONFIGURATION DOCUMENT LIST

The list of internal documents used for the generation of this report is:

- Unavailability_10_05_12.xls
- Details_Calibrations_23_04_12.xls
- SO-MN-IDR-GS-0383_CCB-106_11-Apr-12_v10.doc
- SO-MN-IDR-GS-0384_CCB-107_20-Apr-12_v10.doc
- SO-MN-IDR-GS-0385_CCB-108_24-Apr-12_v10.doc
- SO-MN-IDR-GS-0386_CCB-109_08-May-12_v10.doc

This Page Is Intentionally Blank

End of Document