





# QUARTERLY IMAGE QUALITY REPORT

IQR#019

Reporting period from 16/06/2018 to 15/09/2018

Reference: *PROBA-V\_D9\_QIR-019\_2018-Q3\_v1.0* Author(s): Sindy Sterckx, Stefan Adriaensen, Iskander Benhadj, Erwin Wolters Version: 1.0 Date: 20/09/2018



# **DOCUMENT CONTROL**

## **Signatures**

| Author(s)         | Sindy Sterckx, Stefan Adriaensen, Erwin Wolters, Iskander Benhadj |
|-------------------|-------------------------------------------------------------------|
| Reviewer(s)       | Lieve Van den Heuvel                                              |
| Approver(s)       | Dennis Clarijs                                                    |
| Issuing authority | VITO N.V.                                                         |

## **Change record**

| Release | Date       | Pages | Description     | Editor(s)/Reviewer(s) |
|---------|------------|-------|-----------------|-----------------------|
| 1.0     | 20/09/2018 | All   | Initial version |                       |



# TABLE OF CONTENT

| 1. RADIOMETRIC IMAGE QUALITY                           | 4 |
|--------------------------------------------------------|---|
| 1.1. Summary                                           |   |
| 1.2. Assessment of the radiometric accuracy            |   |
| 1.2.1. Absolute radiometric accuracy                   | 5 |
| 1.2.1.1. Libya-4 desert calibration                    | 5 |
| 1.2.1.2. Rayleigh calibration                          |   |
| 1.2.2. Inter-band radiometric accuracy                 |   |
| 1.2.2.1. Calibration over deep convective clouds (DCC) |   |
| 1.2.3. PROBA-V Multi-temporal radiometric accuracy     |   |
| 1.2.3.1. Degradation model                             |   |
| 1.2.3.2. Lunar calibration                             |   |
| 1.2.3.3. Libya-4 VS Moon                               |   |
| 1.3. Dark current                                      |   |
| 1.3.1. Methodology                                     |   |
| 1.3.2. VNIR results                                    |   |
| 1.3.3. SWIR results                                    |   |
| 1.4. Yaw manoeuvre: Low Frequency Equalisation         |   |
| 1.5. Bad nixels                                        |   |
| 1.6. Radiometric ICP file                              |   |
|                                                        |   |

| 2. GEC    | OMETRIC IMAGE QUALITY                         |    |
|-----------|-----------------------------------------------|----|
| 2.1. Sum  | 1mary                                         |    |
| 2.2. Asse | essment of the geometric accuracy on L1C data |    |
| 2.3. Asse | essment of the geometric accuracy on L2 data  | 40 |
| 2.3.1.    | Absolute geometric accuracy                   |    |
| 2.3.2.    | Inter-band geometric accuracy                 |    |
| 2.3.3.    | Multi-temporal geometric accuracy             |    |
| 2.4. Geo  | metric ICP file                               | 49 |
|           |                                               |    |
| 3. REF    | ERENCE DOCUMENTS                              |    |



# **1. Radiometric Image Quality**

## 1.1. Summary

An over-correction of the degradation is visible in the SWIR calibration results. It is therefore now decided to no longer apply the degradation model for the SWIR strips. This change will be implemented starting from the next ICP file update on the October 1, 2018. Investigation for the implementation of a non-linear degradation model to take better into account the asymptotic degradation trend is on-going.

The DDC blue band calibration results show a decreasing trend. This trend is probably caused by two effects : 1) an increase in the response of the RED reference band as seen in desert and lunar calibration results and 2) a decrease in response of the BLUE band itself that is not fully compensated for by the application of the blue band degradation model. More investigation is needed to decide on the proper actions.

The three yaw maneuver campaigns (on July 9,18 and 27) were successfully performed over the Niger1 site for the three different cameras and will be analyzed in the coming period and compared to the results retrieved on the basis of the yaw maneuvers performed last year.

During Q3 of 2018 one new bad pixel (i.e. center SWIR1 PixelID 819 0-based) was identified.



## **1.2.** Assessment of the radiometric accuracy

## **1.2.1.** Absolute radiometric accuracy

The absolute radiometric calibration requirement for PROBA-V specifies a 5 % absolute accuracy. This requirement is assessed through vicarious calibration over Libya-4 desert site and Rayleigh calibration zones.

#### 1.2.1.1. Libya-4 desert calibration

#### Methodology

The nominal approach for assessing the absolute radiometric accuracy relies on the comparison between cloud-free TOA reflectance as measured over the Libya-4 desert site by PROBA-V and the modelled TOA reflectance values, following the approach described in [LIT1]. Validation of the approach using various satellite data (i.e. AQUA-MODIS, MERIS, AATSR, PARASOL, SPOT-VGT) has shown that absolute calibration over the Libya-4 desert is achievable with this approach with an accuracy of 3% [LIT1, LIT2].

#### Results

In Figure 1, Figure 3 and Figure 5 the monthly averaged results  $(avg(\rho_{TOA}^{k,ProbaV(Acom)}/\rho_{TOA}^{k,model}))$  and its standard deviation are given for respectively LEFT, CENTER and RIGHT camera. The individual area-averaged results are given in Figure 2, Figure 4 and Figure 6 with a 3 % error bar

(as expected uncertainty for an individual result) for respectively VNIR and SWIR strips.

Results are obtained based on the **<u>Collection 1</u>** ICP files.

It should be noted that since 2018 a degradation model is no longer in use for the RIGHT SWIR strips, while for LEFT and CENTER strips a linear degradation is still being applied. The Libya-4 calibration results do show a slight overcorrection of the degradation. It is therefore now decided to no longer apply the degradation model for the SWIR strips. This change will be implemented starting from the next ICP file update on the October 1, 2018. Investigation for the implementation of a non-linear degradation model to take better into account the asymptotic degradation trend is on-going.





Figure 1. Libya-4 desert calibration results: LEFT monthly averaged results (Collection 1)





Figure 2. Libya-4 desert calibration results: LEFT individual results (Collection 1)





Figure 3. Libya-4 desert calibration results: CENTER monthly averaged results (Collection 1)





Figure 4. Libya-4 desert calibration results: CENTER individual results (Collection 1)





Figure 5. Libya-4 desert calibration results: RIGHT monthly averaged results (Collection 1)





Figure 6. Libya-4 desert calibration results: RIGHT individual results (Collection 1)



#### 1.2.1.2. Rayleigh calibration

#### Methodology

The Rayleigh calibration approach is an absolute calibration method for BLUE and RED bands. The primary assumption of the approach is that the ocean does not contribute to the Top-Of-Atmosphere (TOA) signal in the NIR. The contribution of aerosol scattering is derived from the *NIR reference band* where molecular scattering is negligible. The aerosol content estimated from the NIR band is then transferred to the BLUE and RED band to model the TOA radiance with a radiative transfer code. The simulated radiance values are then compared with the measured values.

#### Results

The scene averaged Rayleigh results ( $(\rho_{TOA}^{k,ProbaV(Acom)}/\rho_{TOA}^{k,model})$ ) (with a 4 % error bar as rough indication of uncertainty of one individual result) obtained since January 2014 for LEFT, CENTER and RIGHT camera are given in respectively Figure 7, Figure 8 and Figure 9.

Results are obtained using the **<u>Collection 1 ICP</u>** files.

No significant trend is visible in the Rayleigh calibration results.





Figure 7. Rayleigh absolute calibration results: LEFT camera (Collection 1)





Figure 8. Rayleigh absolute calibration results: CENTER camera (Collection 1)







Figure 9. Rayleigh absolute calibration results: RIGHT camera (Collection 1)



## **1.2.2.** Inter-band radiometric accuracy

The inter-band radiometric calibration requirement for PROBA-V specifies a 3 % inter-band accuracy. This requirement is assessed through vicarious calibration over deep convective clouds.

#### 1.2.2.1. Calibration over deep convective clouds (DCC)

#### Methodology

The DCC approach is an inter-band calibration method. It makes use of bright, thick, high altitude, convective clouds over oceanic sites. Their reflective properties are spectrally flat in visible and near-infrared and the only contributions to the observed signal are from the cloud reflectance, molecular scattering and ozone absorption which can be modelled with a radiative transfer code.

The cloud reflectance in the non-absorbing VNIR bands is mainly sensitive to the cloud optical thickness. The DCC method uses the TOA reflectance in the 'reference' RED band to estimate cloud optical thickness assuming a fixed ice particle model. The derived cloud optical thickness is then used to model using a radiative transfer code the TOA reflectance for the BLUE and NIR band.

The method is not suited for the SWIR band as clouds are no longer spectrally uniform in this spectral region.

#### Results

The DCC inter-band calibration is defined by reference to the used RED reference band. The average DCC inter-band calibration result per month (from March 2015 to September 2018) is given in Figure 10 for all cameras using the <u>collection 1 ICP files</u>.

The DDC blue band calibration results show a decreasing trend. This trend is probably caused by two effects : 1) an increase in the response of the RED reference band as seen in desert and lunar calibration results and 2) a decrease in response of the BLUE band itself that is not fully compensated for by the application of the blue band degradation model. More investigation is needed to decide on the proper actions.





Figure 10. DCC inter-band calibration results: LEFT, CENTER and RIGHT camera

Page 17 of 51



## 1.2.3. PROBA-V Multi-temporal radiometric accuracy

#### 1.2.3.1. Degradation model

No changes have been made to the degradation models in this reporting period.

As the Libya-4 calibration results do show a slight overcorrection of the degradation, it is now decided to no longer apply the degradation model for the SWIR strips. This change will be implemented starting from the next ICP file update on the October 1, 2018. Investigation for the implementation of a non-linear degradation model to take better into account the asymptotic degradation trend is on-going.

In Table 1 the applied degradation model correction is given. This linear degration model is being applied for collection 1 since start of the operational phase (i.e. October 2013). A re-evaluation of the coefficients of the SWIR degradation model was performed in summer 2017. Since Jan 2018 a degradation model is no longer applied to the RIGHT SWIR strips. From October 2018 onwards this will the case for the other SWIR strips.

|              | Degradation model ICP |                       |                       |          |  |  |  |  |  |  |  |  |  |
|--------------|-----------------------|-----------------------|-----------------------|----------|--|--|--|--|--|--|--|--|--|
|              | Start- aug<br>2017    | Sept 2017-Dec<br>2018 | Jan 2018-Sept<br>2018 | Oct 2018 |  |  |  |  |  |  |  |  |  |
| SWIR1 LEFT   | -0.087                | -0.087                | -0.087                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR2 LEFT   | -0.104                | -0.104                | -0.104                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR3 LEFT   | -0.097                | -0.097                | -0.097                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR1 CENTER | -0.093                | -0.093                | -0.093                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR2 CENTER | -0.092                | -0.092                | -0.092                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR3 CENTER | -0.086                | -0.086                | -0.086                | NA       |  |  |  |  |  |  |  |  |  |
| SWIR1 RIGHT  | -0.106                | -0.077                | NA                    | NA       |  |  |  |  |  |  |  |  |  |
| SWIR2 RIGHT  | -0.143                | -0.122                | NA                    | NA       |  |  |  |  |  |  |  |  |  |
| SWIR3 RIGHT  | -0.122                | -0.078                | NA                    | NA       |  |  |  |  |  |  |  |  |  |

Table 1 SWIR degradation model: applied linear trend/month

A degradation model is used to update the absolute calibration coefficients of the LEFT and RIGHT BLUE since May 2017. A re-evaluation of the coefficients of the degradation model was performed in summer 2017. Since then no changes have been made to the model. In Table 2 the coefficients are given.

As mentioned in previous sections the DDC blue band calibration results show a decreasing trend. This trend is probably caused by two effects : 1) an increase in the response of the RED reference band as seen in desert and lunar calibration results and 2) a decrease in response of the BLUE band itself that is not fully compensated for by the application of the blue band degradation model. More investigation is needed to decide on the proper actions related to the degradation model.



Table 2 Degradation model BLUE LEFT and CENTER camera: applied linear trend/month

|            | Linear trend          | l/month (%)           |
|------------|-----------------------|-----------------------|
|            | Degradation model ICP | Degradation model ICP |
| STRIP      | may 2017-aug 2017     | since sept 2017       |
| BLUE LEFT  | -0.028                | -0.036                |
| BLUE RIGHT | -0.011                | -0.034                |

#### 1.2.3.2. Lunar calibration

The Lunar calibration results for the VNIR CENTER camera bands, normalised to June 2013, are given in Figure 11. The results are given based on the **collection 1 ICP** files.

Similarly as in the Libya-4 CENTER RED results an increase in responsivity is observed in the lunar CENTER RED results and a degradation in the BLUE calibration results, whereas the results of the NIR strip seems to stable over time.

#### **Quarterly Image Quality Report PROBA-V** Operations



Contract No. 4000111291/14/I-LG - 1310174





Figure 11. Lunar Calibration results CENTER camera normalised to June 2013 (collection 1 ICP files)

#### 1.2.3.3. Libya-4 VS Moon

As mentioned in previous report degradation trends observed in the Lunar calibration results for the center SWIR2 strip are less significant than these observed in the desert calibration results.

In the frame of the ESA's 'Lunar Irradiance Measurements of the Moon' project VITO is working on an improved lunar model. A reprocessing of the PROBA-V lunar calibration results based on the



improved model is foreseen for the near future. It is expected that this will give us a better insight in the actual degradation trend.



Figure 12. Comparison of degradation monitoring of CENTER SWIR2 strip on the basis of the lunar and Libya-4 calibration results



## **1.3.** Dark current

## 1.3.1. Methodology

- Monthly difference plots :
  - All dark current results obtained during a period of one month for observations performed with a long integration time are averaged per pixel. This gives for each pixel the monthly averaged dark current, expressed **in LSB/s**, and its standard deviation.
  - The dark current results and its standard deviation expressed in LSB/s are converted to LSB using a maximum Integration Time for nominal acquisitions. For VNIR strips 0.006s is used. For SWIR strips 0.02s.
  - The differences between months (i.e. Month3-Month2, Month2-Month1) are calculated. This is done for both the dark current and the stdev. Differences are visualized in plots in blue the dark current difference in LSB is plotted, in red the standard deviation difference. This latter is an indicator of changes in the dark current noise between months.

As mentioned in the previous quarterly report (IQR#005) the integration time used for the SWIR dark current acquisitions has been decreased from 3s to 0.2 s since 2015.

## **1.3.2.** VNIR results

Monthly difference plots for VNIR dark currents are given in Figure 13, Figure 14 and Figure 15 for respectively LEFT, CENTER and RIGHT camera.

Dark current differences for the VNIR bands are well below 1 DN.





Figure 13. LEFT camera VNIR: Monthly difference (MAY AUG2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.





Figure 14. CENTER camera VNIR: Monthly difference (-MAY AUG2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.





Figure 15. RIGHT camera VNIR: Monthly difference (MAY AUG2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.



### **1.3.3.** SWIR results



Monthly difference plots for SWIR dark currents are given in Figure 16, Figure 17 and

*Figure 18* for respectively LEFT, CENTER and RIGHT camera.

A dark current outlier analysis is performed for pixels having for at least one month a dark current expressed in LSB larger than the DC THRESHOLD. This DC THRESHOLD is set to 4 LSB. For those pixels the following dark current pixel statuses are given:

- Both monthly differences > 4 LSB ? Quality is "H DC BAD"
- One monthly difference > 4 LSB ? Quality is "H DC NOK".
- Both monthly differences < 4 LSB ? Quality is "H DC OK"</p>

| In | Tab | le | 3, |
|----|-----|----|----|
|----|-----|----|----|

|           |          | APR-M     | AY-JUN   |           |          |   |           |          | MAY-J     | UN-JUL   |           |          |           |          | JUN-JU    | IL-AUG   |           |          |
|-----------|----------|-----------|----------|-----------|----------|---|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| SV        | /IR1     | SW        | IR2      | SM        | /IR3     |   | SM        | /IR1     | SW        | IR2      | SM        | /IR3     | SWIR1     |          | SWIR2     |          | SWIR3     |          |
| 651       | H DC NOK | 419       | H DC BAD | 354       | H DC NOK |   | 545       | H DC NOK | 419       | H DC NOK | 354       | H DC NOK | 819       | H DC BAD | 208       | H DC NOK | 504       | H DC BAD |
| 940       | H DC NOK | 112       | H DC NOK | 448       | H DC NOK |   | 819       | H DC NOK | 648       | H DC NOK | 504       | H DC NOK | 916       | H DC BAD | 648       | H DC NOK | 729       | H DC BAD |
| 987       | H DC NOK | 266       | H DC NOK | 509       | H DC NOK |   | 916       | H DC NOK | 273pixels | H DC OK  | 509       | H DC NOK | 109       | H DC NOK | 279pixels | H DC OK  | 162pixels | H DC OK  |
| 222pixels | H DC OK  | 648       | H DC NOK | 564       | H DC NOK |   | 940       | H DC NOK |           |          | 729       | H DC NOK | 545       | H DC NOK |           |          |           |          |
|           |          | 262pixels | H DC OK  | 147pixels | H DC OK  | 2 | 222pixels | H DC OK  |           |          | 156pixels | H DC OK  | 908       | H DC NOK |           |          |           |          |
|           |          |           |          |           |          |   |           |          |           |          |           |          | 235pixels | H DC OK  |           |          |           |          |
|           |          |           |          |           |          |   |           |          |           |          |           |          |           |          |           |          |           |          |



*Table 4* and *Table 5* the resulting SWIR dark current status during the last 3 months is reported for respectively LEFT, CENTER and RIGHT camera.

Similarly as in previous reporting periods jumps in the dark current values of a few SWIR pixels is observed, requiring regular updates of ICP dark current values.





Figure 16. LEFT camera SWIR: Monthly difference (MAY AUG 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.





Figure 17. CENTER camera SWIR: Monthly difference (MAY - AUG2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.





Figure 18. RIGHT camera SWIR: Monthly difference (MAY- AUG2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.



|           |          | APR-M     | AY-JUNE  |           |          |           |          | MAY-JU    | INE-JULY |           | JUNE-JULY-AUG |           |          |          |          |           |          |  |  |
|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|---------------|-----------|----------|----------|----------|-----------|----------|--|--|
| SV        | VIR1     | SW        | 'IR2     | SW        | IR3      | SV        | VIR1     | SW        | IR2      | SW        | IR3           | SV        | VIR1     | SW       | /IR2     | SW        | 1R3      |  |  |
| 3         | H DC NOK | 519       | H DC BAD | 75        | H DC BAD | 3         | H DC BAD | 168       | H DC NOK | 871       | H DC BAD      | 3         | H DC NOK | 168      | H DC BAD | 178       | H DC BAD |  |  |
| 104       | H DC NOK | 914       | H DC NOK | 259       | H DC BAD | 257       | H DC NOK | 519       | H DC NOK | 934       | H DC BAD      | 950       | H DC NOK | 772      | H DC NOK | 370       | H DC BAD |  |  |
| 257       | H DC NOK | 945       | H DC NOK | 90        | H DC NOK | 950       | H DC NOK | 914       | H DC NOK | 7         | H DC NOK      | 211pixels | H DC OK  | 33pixels | H DC OK  | 623       | H DC BAD |  |  |
| 567       | H DC NOK | 313pixels | H DC OK  | 297       | H DC NOK | 211pixels | H DC OK  | 945       | H DC NOK | 75        | H DC NOK      |           |          |          |          | 986       | H DC BAD |  |  |
| 614       | H DC NOK |           |          | 336       | H DC NOK |           |          | 317pixels | H DC OK  | 178       | H DC NOK      |           |          |          |          | 7         | H DC NOK |  |  |
| 892       | H DC NOK |           |          | 398       | H DC NOK |           |          |           |          | 254       | H DC NOK      |           |          |          |          | 52        | H DC NOK |  |  |
| 207pixels | H DC OK  |           |          | 423       | H DC NOK |           |          |           |          | 259       | H DC NOK      |           |          |          |          | 75        | H DC NOK |  |  |
|           |          |           |          | 440       | H DC NOK |           |          |           |          | 297       | H DC NOK      |           |          |          |          | 115       | H DC NOK |  |  |
|           |          |           |          | 696       | H DC NOK |           |          |           |          | 336       | H DC NOK      |           |          |          |          | 254       | H DC NOK |  |  |
|           |          |           |          | 871       | H DC NOK |           |          |           |          | 370       | H DC NOK      |           |          |          |          | 333       | H DC NOK |  |  |
|           |          |           |          | 934       | H DC NOK |           |          |           |          | 385       | H DC NOK      |           |          |          |          | 385       | H DC NOK |  |  |
|           |          |           |          | 966       | H DC NOK |           |          |           |          | 398       | H DC NOK      |           |          |          |          | 494       | H DC NOK |  |  |
|           |          |           |          | 802pixels | H DC OK  |           |          |           |          | 423       | H DC NOK      |           |          |          |          | 515       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 440       | H DC NOK      |           |          |          |          | 567       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 568       | H DC NOK      |           |          |          |          | 568       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 623       | H DC NOK      |           |          |          |          | 696       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 696       | H DC NOK      |           |          |          |          | 737       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 836       | H DC NOK      |           |          |          |          | 836       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 907       | H DC NOK      |           |          |          |          | 871       | H DC NOK |  |  |
| L         |          |           |          |           |          |           |          |           |          | 966       | H DC NOK      |           |          |          |          | 907       | H DC NOK |  |  |
| L         |          |           |          |           |          |           |          |           |          | 986       | H DC NOK      |           |          |          |          | 934       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          | 807pixels | H DC OK       |           |          |          |          | 966       | H DC NOK |  |  |
|           |          |           |          |           |          |           |          |           |          |           |               |           |          |          |          | 821pixels | H DC OK  |  |  |
| 1         |          |           | 1        |           |          |           |          |           |          | 1         | i             |           |          |          | 1        | 1         |          |  |  |

Table 3. LEFT SWIR dark current pixel outliers (ID L1A).

|           |                   | APR-M     | AY-JUN   |           |          |    |           |          | MAY-J     | UN-JUL   |           |          |           |          | JUN-JU    |          |           |          |
|-----------|-------------------|-----------|----------|-----------|----------|----|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|-----------|----------|
| SV        | SWIR1 SWIR2 SWIR3 |           |          |           |          |    | SM        | /IR1     | SWIR2     |          | SWIR3     |          | SWIR1     |          | SWIR2     |          | SWIR3     |          |
| 651       | H DC NOK          | 419       | H DC BAD | 354       | H DC NOK |    | 545       | H DC NOK | 419       | H DC NOK | 354       | H DC NOK | 819       | H DC BAD | 208       | H DC NOK | 504       | H DC BAD |
| 940       | H DC NOK          | 112       | H DC NOK | 448       | H DC NOK |    | 819       | H DC NOK | 648       | H DC NOK | 504       | H DC NOK | 916       | H DC BAD | 648       | H DC NOK | 729       | H DC BAD |
| 987       | H DC NOK          | 266       | H DC NOK | 509       | H DC NOK |    | 916       | H DC NOK | 273pixels | H DC OK  | 509       | H DC NOK | 109       | H DC NOK | 279pixels | H DC OK  | 162pixels | H DC OK  |
| 222pixels | H DC OK           | 648       | H DC NOK | 564       | H DC NOK |    | 940       | H DC NOK |           |          | 729       | H DC NOK | 545       | H DC NOK |           |          |           | 1        |
|           |                   | 262pixels | H DC OK  | 147pixels | H DC OK  | 14 | 222pixels | H DC OK  |           |          | 156pixels | H DC OK  | 908       | H DC NOK |           |          |           |          |
|           |                   |           |          |           |          |    |           |          |           |          |           |          | 235pixels | H DC OK  |           |          |           |          |
|           |                   |           |          |           |          |    |           |          |           |          |           |          |           |          |           |          |           |          |

Table 4. CENTER SWIR dark current pixel outliers (ID L1A)

|           |          | APR-MA    | Y-JUNE   |           |          | MAY-JUNE-JULY |          |           |          |           |          |  |           |          | JUNE-JU   | LY-AUG   |           |          |
|-----------|----------|-----------|----------|-----------|----------|---------------|----------|-----------|----------|-----------|----------|--|-----------|----------|-----------|----------|-----------|----------|
| 732       | H DC BAD | 4         | H DC BAD | 122       | H DC NOK | 36            | H DC NOK | 4         | H DC NOK | 607       | H DC BAD |  | 36        | H DC NOK | 398       | H DC NOK | 607       | H DC NOK |
| 957       | H DC NOK | 438       | H DC BAD | 354       | H DC NOK | 732           | H DC NOK | 438       | H DC NOK | 122       | H DC NOK |  | 271       | H DC NOK | 500       | H DC NOK | 341pixels | H DC OK  |
| 376pixels | H DC OK  | 476       | H DC NOK | 607       | H DC NOK | 922           | H DC NOK | 476       | H DC NOK | 850       | H DC NOK |  | 575       | H DC NOK | 510       | H DC NOK |           |          |
|           |          | 433pixels | H DC OK  | 677       | H DC NOK | 935           | H DC NOK | 510       | H DC NOK | 1005      | H DC NOK |  | 922       | H DC NOK | 459pixels | H DC OK  |           |          |
|           |          |           |          | 850       | H DC NOK | 391pixels     | H DC OK  | 455pixels | H DC OK  | 334pixels | H DC OK  |  | 935       | H DC NOK |           |          |           |          |
|           |          |           |          | 1005      | H DC NOK |               |          |           |          |           |          |  | 389pixels | H DC OK  |           |          |           |          |
|           |          |           |          | 323pixels | H DC OK  |               |          |           |          |           |          |  |           |          |           |          |           |          |

Table 5. RIGHT SWIR dark current pixel outliers (ID L1A)



## **1.4.** Yaw manoeuvre: Low Frequency Equalisation

The three yaw maneuver campaigns (on July 9,18 and 27) were successfully performed over the Niger1 site for the three different cameras and will be analyzed in the coming period and compared to the results retrieved on the basis of the yaw maneuvers performed last year.



## **1.5.** Bad pixels

One new bad pixel was identified in this reporting period.

|          |       |         |                         |       |       |     |       |        |       |       |       |      |     |     | ,   |     |     |
|----------|-------|---------|-------------------------|-------|-------|-----|-------|--------|-------|-------|-------|------|-----|-----|-----|-----|-----|
|          |       | Re      | eporti                  | ng pe | eriod | Mid | -June | e 201  | 8- Mi | id-Se | pt 20 | )18  |     |     |     |     |     |
|          | стрір |         | pixel numbers (ID L1 A) |       |       |     |       |        |       |       |       |      |     |     |     |     |     |
| CAIVIERA | SIRIP | NEW BAD |                         | -     |       |     | BAI   | D (fro | om p  | revic | ous p | erio | ds) |     |     |     |     |
| left     | swir1 |         | 3*                      | 28    | 104   | 298 | 345   | 352    | 644   | 956   |       |      |     |     |     |     |     |
| left     | swir2 |         | 711                     | 863   |       |     |       |        |       |       |       |      |     |     |     |     |     |
| left     | swir3 |         | 90                      | 172   | 250   | 370 | 419   | 438    | 568   | 759   | 761   |      |     |     |     |     |     |
| center   | swir1 | 819     | 1021                    |       |       |     |       |        |       |       |       |      |     |     |     |     |     |
| center   | swir2 |         | 57                      | 295   | 769   | 831 | 900   |        |       |       |       |      |     |     |     |     |     |
| center   | swir3 |         | 29                      | 30    | 99    | 131 | 448   | 476    | 579   | 640   | 763   | 804  | 889 | 890 | 917 | 938 | 994 |
| right    | swir1 |         |                         |       |       |     |       |        |       |       |       |      |     |     |     |     |     |
| right    | swir2 |         | 14                      | 438   | 470   |     |       |        |       |       |       |      |     |     |     |     |     |
| right    | swir3 |         |                         |       |       |     |       |        |       |       |       |      |     |     |     |     |     |

Note :\*wrong ID number assigned was assigned to the bad pixel, has been solved.

Table 6: Overview Bad pixels



## **1.6.** Radiometric ICP file

The updates to the radiometric ICP file used within the user segment for the processing of the nominal PROBA-V data by PF are listed in the Table 9 for collection 1.

| PROBAV_X_R_000_YEARMN01_ <b>101</b> .xml* | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
|-------------------------------------------|-----------------------------------------------------------------------------------------|
| PROBAV_X_R_000_20161201_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20161201_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20161201_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20161201_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20170101_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20170120_01.xml            | SWIR status map updated : 1 bad pixel added                                             |
| PROBAV_X_R_000_20170201_01.xml            | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model** |
| PROBAV_X_R_000_20170220_01.xml            | SWIR status map updated : 1 bad pixel added                                             |



| PROBAV_X_R_000_20170301_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**                                                                                                                                                                                                                                            |
|--------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROBAV_X_R_000_20170401_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**<br>SWIR status map updated : 1 bad pixel added                                                                                                                                                                                             |
| PROBAV_X_R_000_2017051_01.xml  | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model***                                                                                                                       |
| PROBAV_X_R_000_20170601_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model***                                                                                                                       |
| PROBAV_X_R_000_20170701_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model***<br>SWIR status map updated : 1 bad pixel added                                                                        |
| PROBAV_X_R_000_20170801_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model**<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model***<br>SWIR status map updated : 2 bad pixel added                                                                        |
| PROBAV_X_R_000_20170901_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model***, new coef applied for RIGHT<br>SWIR strips****<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model <b>with new coef</b> ****<br>SWIR status map updated : 2 bad pixel added |



| PROBAV_X_R_000_20171001_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model***, new coef applied for RIGHT<br>SWIR strips****<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model <b>with new coef</b> ****                         |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROBAV_X_R_000_20171101_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model***, new coef applied for RIGHT<br>SWIR strips*****<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model with new coef ****                               |
| PROBAV_X_R_000_20171201_01.xml | Update dark currents<br>Update of SWIR absolute following linear<br>degradation model***, new coef applied for RIGHT<br>SWIR strips****<br>Update of LEFT BLUE and CENTER BLUE absolute<br>calibration coefficients following linear degradation<br>model <b>with new coef</b> ****                         |
| PROBAV_X_R_000_20180101_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180201_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180301_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients                                                                    |



|                                | following linear degradation model with new coef ****                                                                                                                                                                                                                                                       |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROBAV_X_R_000_20180401_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180501_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180601_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180701_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |
| PROBAV_X_R_000_20180801_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |



| PROBAV_X_R_000_20180821_01.xml | SWIR status map updated : 1 bad pixel added for<br>SWIR2 center camera + correction for assignment<br>of bad pixel status to wrong pixel ID                                                                                                                                                                 |
|--------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| PROBAV_X_R_000_20180901_01.xml | Update dark currents<br>Update of LEFT and CENTER SWIR absolute<br>following linear degradation model***; <b>No update</b><br><b>of RIGHT SWIR absolute cal</b> Update of LEFT BLUE<br>and CENTER BLUE absolute calibration coefficients<br>following linear degradation model <b>with new coef</b><br>**** |

Table 7: Radiometric ICP-file updates Collection 1



# **2. Geometric Image Quality**

## 2.1. Summary

The quarterly average location error (ALE) over the period 16/6/2018 - 15/9/2018 was 72 m (16 = 79 m) for all spectral bands (combined cameras). Compared to the previous reporting period the ALE has increased by 6%.

The total number of chips per day and per spectral band used for the geometric accuracy analysis decreased by 3% on average compared to the previous reporting period.

The daily average location error compliance (ALE < 300m) was 99.23%, which is 0.11% higher than in the previous reporting period. The inter-band geometric accuracy was 32 m - 50 m ( $\sigma = 7 - 15$  m), which is 0.09 - 0.15 of a pixel (333 m), a result that is similar to the previous reporting period.

The multi-temporal geometric accuracy was 83.16% (0.66% lower compared to previous quarter) for the VNIR and 95.10% (0.12% higher compared to previous quarter) for the combined VNIR/SWIR. The multi-temporal accuracies over the last full year are 82.78% and 94.86% for VNIR and VNIR/SWIR, respectively.

The geometric ICP file generated on 8/9/2016, valid from 1/9/2016 has remained valid throughout the reporting period.



## **2.2.** Assessment of the geometric accuracy on L1C data

The absolute location error (ALE) and accompanying standard deviation of the Level1C data is presented in the tables below for each camera, spectral band/strip and reporting month.

|              | CAMERA 1 Mean and standard deviation ALE [m] |                          |                       |  |  |  |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------------|--------------------------|-----------------------|--|--|--|--|--|--|--|--|--|--|--|
| Strip\Period | 16/6/2018 - 15/7/2018                        | 16/7/2018 - 15/8/2018    | 16/8/2018 - 15/9/2018 |  |  |  |  |  |  |  |  |  |  |  |
| BLUE         | 48.81, σ = 29.26                             | 49.52 <i>,</i> σ = 28.09 | 48.44, σ = 28.84      |  |  |  |  |  |  |  |  |  |  |  |
| RED          | 50.03, σ = 30.39                             | 50.07, σ = 28.95         | 49.55, σ = 30.01      |  |  |  |  |  |  |  |  |  |  |  |
| NIR          | 50.34, σ = 29.72                             | 51.00, σ = 28.85         | 50.30, σ = 29.93      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR1        | 74.48, σ = 47.26                             | 74.65, σ = 46.92         | 73.57, σ = 46.31      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR2        | 52.62, σ = 29.54                             | 51.91, σ = 28.32         | 51.81, σ = 29.06      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR3        | 48.81, σ = 28.48                             | 45.98, σ = 25.52         | 46.21, σ = 26.29      |  |  |  |  |  |  |  |  |  |  |  |

Table 8: Mean absolute location error and standard deviation ( $\sigma$ ) for camera 1.

|              | CAMERA 2 Mean and standard deviation ALE [m] |                          |                       |  |  |  |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------------|--------------------------|-----------------------|--|--|--|--|--|--|--|--|--|--|--|
| Strip\Period | 16/6/2018 - 15/7/2018                        | 16/7/2018 - 15/8/2018    | 16/8/2018 - 15/9/2018 |  |  |  |  |  |  |  |  |  |  |  |
| BLUE         | 57.23, σ = 33.97                             | 49.05 <i>,</i> σ = 29.55 | 50.61, σ = 29.96      |  |  |  |  |  |  |  |  |  |  |  |
| RED          | 58.47, σ = 34.24                             | 49.96, σ = 29.73         | 51.98, σ = 30.45      |  |  |  |  |  |  |  |  |  |  |  |
| NIR          | 55.26, σ = 32.89                             | 47.30, σ = 27.99         | 48.89, σ = 28.86      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR1        | 57.68, σ = 33.89                             | 49.73, σ = 29.21         | 52.70, σ = 30.45      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR2        | 57.49, o = 34.44                             | 49.43, σ = 29.47         | 52.54, σ = 31.25      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR3        | 57.78, σ = 34.68                             | 50.01, σ = 29.56         | 52.42, σ = 31.09      |  |  |  |  |  |  |  |  |  |  |  |

Table 9: Mean absolute location error and standard deviation ( $\sigma$ ) for camera 2.

|              | CAMERA 3 Mean and standard deviation ALE [m] |                       |                       |  |  |  |  |  |  |  |  |  |  |  |
|--------------|----------------------------------------------|-----------------------|-----------------------|--|--|--|--|--|--|--|--|--|--|--|
| Strip\Period | 16/6/2018 - 15/7/2018                        | 16/7/2018 - 15/8/2018 | 16/8/2018 - 15/9/2018 |  |  |  |  |  |  |  |  |  |  |  |
| BLUE         | 69.63 <i>,</i> σ = 35.78                     | 74.04, σ = 37.59      | 71.02, σ = 36.68      |  |  |  |  |  |  |  |  |  |  |  |
| RED          | 71.23, σ = 38.75                             | 78.55, σ = 41.39      | 75.81, σ = 41.70      |  |  |  |  |  |  |  |  |  |  |  |
| NIR          | 63.12, σ = 35.13                             | 65.97, σ = 36.64      | 65.68, σ = 37.60      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR1        | 61.48, σ = 34.01                             | 61.34, σ = 33.41      | 59.32, σ = 33.14      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR2        | 65.16, σ = 37.07                             | 67.80, σ = 37.66      | 65.78, σ = 37.49      |  |  |  |  |  |  |  |  |  |  |  |
| SWIR3        | 83.59, σ = 47.95                             | 90.60, σ = 52.72      | 86.48, σ = 51.53      |  |  |  |  |  |  |  |  |  |  |  |

Table 10: Mean absolute location error and standard deviation ( $\sigma$ ) for camera 3.

In the reporting period the average location error of the Level 1C data was 59.2 m, which is 5.6 m (8.7%) lower than in the previous quarter.



## **2.3.** Assessment of the geometric accuracy on L2 data

## **2.3.1.** Absolute geometric accuracy

The daily summary of the L2 data absolute location error for all spectral bands is presented in the tables and figures below for the three reporting months:

- from 16/6/2018 15/7/2018
- from 16/7/2018 15/8/2018
- from 16/8/2018 15/9/2018

The tables list:

- The day of the measurement in format dd-mm-yy
- The daily achieved compliance (%B) for the BLUE band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%R) for the RED band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%N) for the NIR band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%S) for the SWIR band (% of GCP where ALE <=450m)
- The number of GCP per day (NB-B) used to derive the absolute location error ALE for the BLUE band
- The daily average ALE (in m) for the BLUE band (MU-B)
- The daily ALE standard deviation (in m) for the BLUE band (STD-B)
- The number of GCP per day (NB-R) used to derive the absolute location error ALE for the RED band
- The daily average ALE (in m) for the RED band (MU-R)
- The daily ALE standard deviation (in m) for the RED band (STD-R)
- The number of GCP per day (NB-N) used to derive the absolute location error ALE for the NIR band
- The daily average ALE (in m) for the NIR band (MU-N)
- The daily ALE standard deviation (in m) for the NIR band (STD-N)
- The number of GCP per day (NB-S) used to derive the absolute location error ALE for the SWIR band
- The daily average ALE (in m) for the SWIR band (MU-S)
- The daily ALE standard deviation (in m) for the SWIR band (STD-S)



| Day        | %В     | %R     | %N     | %S     | NB-B  | MU-B   | STD-B  | NB-R  | MU-R   | STD-R  | NB-N  | MU-N   | STD-N  | NB-S  | MU-S   | STD-S  |
|------------|--------|--------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|-------|--------|--------|
| 16/06/2018 | 99.07  | 99.49  | 99.50  | 99.77  | 41566 | 65.56  | 85.65  | 52346 | 58.24  | 74.07  | 55706 | 57.13  | 71.22  | 55397 | 61.20  | 73.78  |
| 17/06/2018 | 98.96  | 99.36  | 99.45  | 99.75  | 38308 | 69.53  | 88.18  | 48264 | 63.40  | 85.99  | 52161 | 58.03  | 70.48  | 51078 | 62.80  | 72.14  |
| 18/06/2018 | 98.80  | 99.22  | 99.38  | 99.71  | 35528 | 73.12  | 90.40  | 45005 | 66.23  | 71.17  | 47270 | 61.52  | 66.74  | 45563 | 67.11  | 78.18  |
| 19/06/2018 | 98.81  | 99.15  | 99.35  | 99.75  | 40187 | 72.45  | 100.72 | 50880 | 67.20  | 80.43  | 56881 | 60.95  | 71.16  | 55177 | 64.58  | 77.63  |
| 20/06/2018 | 98.77  | 99.14  | 99.24  | 99.72  | 40937 | 76.08  | 92.77  | 51289 | 70.63  | 75.69  | 56600 | 63.63  | 72.44  | 57642 | 66.35  | 77.79  |
| 21/06/2018 | 98.78  | 99.10  | 99.25  | 99.78  | 36356 | 76.94  | 92.87  | 46367 | 72.35  | 74.27  | 53229 | 68.32  | 74.36  | 53410 | 69.02  | 73.65  |
| 22/06/2018 | 98.58  | 98.85  | 99.07  | 99.68  | 36007 | 80.80  | 106.14 | 43840 | 76.90  | 85.37  | 46065 | 71.73  | 80.21  | 46597 | 72.91  | 80.40  |
| 23/06/2018 | 98.74  | 99.05  | 99.24  | 99.70  | 41217 | 80.89  | 92.84  | 50489 | 77.78  | 79.10  | 51148 | 74.41  | 73.08  | 51210 | 75.58  | 81.83  |
| 24/06/2018 | 98.91  | 99.12  | 99.29  | 99.77  | 42970 | 76.98  | 89.48  | 53045 | 74.21  | 73.25  | 56539 | 72.42  | 72.34  | 56364 | 71.88  | 75.64  |
| 25/06/2018 | 98.86  | 99.23  | 99.41  | 99.76  | 41511 | 77.64  | 91.55  | 51214 | 73.41  | 75.97  | 55065 | 70.12  | 78.20  | 55087 | 70.53  | 70.88  |
| 26/06/2018 | 98.91  | 99.09  | 99.24  | 99.74  | 39415 | 73.11  | 83.55  | 47978 | 71.21  | 74.59  | 52613 | 67.95  | 78.59  | 51385 | 69.45  | 72.12  |
| 27/06/2018 | 98.95  | 99.11  | 98.87  | 99.75  | 4939  | 88.22  | 93.77  | 4745  | 90.35  | 78.96  | 4264  | 92.41  | 79.87  | 2399  | 92.21  | 64.40  |
| 28/06/2018 | NoData | NoData | NoData | NoData | 0     | NoData | NoData |
| 29/06/2018 | 98.46  | 98.69  | 98.86  | 99.64  | 36783 | 88.81  | 103.08 | 45643 | 85.70  | 87.13  | 46667 | 83.27  | 77.98  | 46991 | 80.61  | 82.08  |
| 30/06/2018 | 98.23  | 98.38  | 98.82  | 99.72  | 34831 | 100.36 | 94.08  | 43314 | 99.02  | 87.30  | 46387 | 92.25  | 83.39  | 46078 | 89.81  | 79.30  |
| 01/07/2018 | 98.32  | 98.52  | 98.83  | 99.63  | 37216 | 100.40 | 104.64 | 45696 | 97.54  | 95.19  | 48731 | 88.86  | 95.44  | 47328 | 88.02  | 87.78  |
| 02/07/2018 | 98.35  | 98.61  | 98.87  | 99.62  | 39129 | 95.93  | 103.15 | 48551 | 92.52  | 95.63  | 52476 | 82.99  | 83.47  | 50297 | 83.40  | 89.30  |
| 03/07/2018 | 98.81  | 99.08  | 99.21  | 99.73  | 40074 | 77.40  | 87.49  | 49944 | 73.01  | 78.34  | 54658 | 67.07  | 75.79  | 51830 | 68.62  | 76.73  |
| 04/07/2018 | 99.02  | 99.34  | 99.46  | 99.78  | 41097 | 73.19  | 82.38  | 51748 | 69.13  | 76.46  | 58093 | 63.52  | 74.72  | 58795 | 65.49  | 78.41  |
| 05/07/2018 | 98.84  | 99.18  | 99.39  | 99.79  | 36411 | 74.34  | 88.61  | 46435 | 68.94  | 75.62  | 54100 | 60.74  | 78.01  | 53502 | 63.32  | 70.52  |
| 06/07/2018 | 98.63  | 98.90  | 99.22  | 99.61  | 34735 | 81.83  | 95.05  | 42102 | 78.02  | 84.82  | 46508 | 70.60  | 74.51  | 44320 | 73.91  | 82.73  |
| 07/07/2018 | 98.79  | 99.07  | 99.30  | 99.74  | 42565 | 76.77  | 98.66  | 45680 | 72.76  | 77.76  | 51788 | 66.29  | 75.08  | 49320 | 69.45  | 76.49  |
| 08/07/2018 | 98.76  | 98.88  | 99.17  | 99.74  | 21188 | 80.57  | 96.16  | 23155 | 76.16  | 85.86  | 27680 | 70.43  | 82.48  | 26718 | 71.78  | 78.13  |
| 09/07/2018 | 99.02  | 99.39  | 97.48  | 100.00 | 307   | 72.84  | 188.32 | 327   | 58.82  | 43.20  | 119   | 91.60  | 155.05 | 420   | 55.74  | 32.70  |
| 10/07/2018 | 98.53  | 99.03  | 99.32  | 99.75  | 22194 | 72.25  | 102.00 | 28638 | 64.78  | 79.14  | 34121 | 58.54  | 71.52  | 27234 | 59.10  | 69.71  |
| 11/07/2018 | 99.19  | 99.74  | 99.82  | 99.93  | 4458  | 69.35  | 106.91 | 6796  | 57.97  | 73.42  | 11550 | 48.87  | 43.79  | 10685 | 51.45  | 41.71  |
| 12/07/2018 | 98.94  | 99.17  | 99.26  | 99.74  | 41387 | 65.78  | 87.54  | 49821 | 61.39  | 77.92  | 51654 | 57.93  | 72.44  | 49642 | 61.04  | 74.94  |
| 13/07/2018 | 98.98  | 99.40  | 99.73  | 99.85  | 14827 | 63.79  | 93.59  | 19316 | 57.78  | 67.51  | 23074 | 52.96  | 55.39  | 20944 | 56.37  | 62.00  |
| 14/07/2018 | 98.70  | 99.09  | 99.23  | 99.72  | 31744 | 65.93  | 89.43  | 39700 | 62.36  | 86.58  | 42857 | 56.36  | 81.55  | 39026 | 60.16  | 81.07  |
| 15/07/2018 | 98.58  | 99.07  | 99.30  | 99.74  | 28994 | 69.59  | 97.77  | 36952 | 63.60  | 84.86  | 42084 | 55.26  | 68.70  | 34998 | 60.43  | 74.94  |
| Averages   | 98.77  | 99.08  | 99.19  | 99.75  | 31562 | 77.26  | 97.48  | 38976 | 72.47  | 78.81  | 42677 | 68.49  | 77.19  | 41320 | 69.05  | 73.74  |

Table 11: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/6/2018 to 15/7/2018.

PROBA-V\_D9\_QIR-019\_2018-Q3\_v1.0Quarterly Image Quality ReportPage 42 of 51







Figure 19: Daily average location error in the period from 16/6/2018 – 15/7/2018 (left) and the average daily compliance of the spectral bands (right).



| Day        | %В    | %R    | %N    | %S    | NB-B  | MU-B   | STD-B  | NB-R  | MU-R  | STD-R | NB-N  | MU-N  | STD-N | NB-S  | MU-S  | STD-S |
|------------|-------|-------|-------|-------|-------|--------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 16/07/2018 | 98.85 | 99.27 | 99.47 | 99.75 | 43658 | 71.66  | 91.13  | 57023 | 66.00 | 72.68 | 65306 | 59.76 | 64.27 | 59873 | 65.38 | 78.39 |
| 17/07/2018 | 98.76 | 98.92 | 99.25 | 99.75 | 18812 | 75.50  | 91.27  | 24080 | 73.17 | 86.69 | 28764 | 65.89 | 69.52 | 27997 | 71.23 | 74.09 |
| 18/07/2018 | 98.76 | 99.22 | 99.35 | 99.74 | 27554 | 78.26  | 97.06  | 34334 | 72.47 | 85.54 | 38102 | 67.97 | 71.48 | 36804 | 70.21 | 76.19 |
| 19/07/2018 | 98.65 | 99.04 | 99.28 | 99.73 | 38731 | 77.41  | 103.74 | 44905 | 73.91 | 87.19 | 52480 | 65.90 | 72.08 | 48966 | 69.70 | 74.73 |
| 20/07/2018 | 98.81 | 99.28 | 99.39 | 99.68 | 35482 | 71.71  | 87.43  | 43862 | 66.72 | 78.59 | 47310 | 61.41 | 72.30 | 44185 | 66.69 | 83.37 |
| 21/07/2018 | 99.04 | 99.28 | 99.48 | 99.75 | 45147 | 67.41  | 83.88  | 55309 | 62.51 | 73.80 | 61654 | 58.31 | 71.39 | 55813 | 63.60 | 79.12 |
| 22/07/2018 | 99.15 | 99.47 | 99.56 | 99.77 | 47100 | 62.57  | 82.68  | 59586 | 56.97 | 69.50 | 60420 | 53.51 | 67.31 | 60734 | 56.51 | 66.73 |
| 23/07/2018 | 98.87 | 99.34 | 99.52 | 99.78 | 25962 | 64.62  | 95.73  | 29740 | 58.69 | 74.39 | 34085 | 55.50 | 72.47 | 33996 | 57.27 | 79.61 |
| 24/07/2018 | 99.52 | 99.64 | 99.77 | 99.96 | 8961  | 60.97  | 67.21  | 11501 | 58.13 | 61.73 | 15076 | 51.01 | 52.93 | 17634 | 53.81 | 47.35 |
| 25/07/2018 | 98.89 | 99.24 | 99.42 | 99.73 | 39829 | 69.24  | 84.79  | 51244 | 64.89 | 68.35 | 49307 | 59.80 | 67.41 | 46706 | 61.02 | 69.47 |
| 26/07/2018 | 99.05 | 99.39 | 99.50 | 99.77 | 41140 | 63.87  | 89.53  | 48051 | 60.07 | 73.89 | 50902 | 56.26 | 69.02 | 51521 | 58.64 | 67.22 |
| 27/07/2018 | 99.13 | 99.62 | 99.75 | 99.91 | 13817 | 65.39  | 92.66  | 19841 | 59.92 | 70.47 | 26599 | 54.86 | 61.66 | 29348 | 54.53 | 54.22 |
| 28/07/2018 | 98.93 | 99.26 | 99.38 | 99.77 | 39217 | 71.95  | 93.52  | 49512 | 67.92 | 82.89 | 54784 | 61.46 | 74.64 | 54260 | 64.21 | 66.54 |
| 29/07/2018 | 98.55 | 98.91 | 99.11 | 99.71 | 35439 | 86.41  | 99.41  | 46590 | 82.77 | 82.07 | 52193 | 74.04 | 74.36 | 47840 | 77.46 | 82.52 |
| 30/07/2018 | 98.02 | 98.45 | 98.68 | 99.69 | 33015 | 103.42 | 104.37 | 41611 | 99.06 | 88.26 | 42688 | 89.42 | 78.76 | 42345 | 90.31 | 77.41 |
| 31/07/2018 | 98.34 | 98.90 | 99.16 | 99.76 | 26664 | 93.44  | 88.98  | 34309 | 89.08 | 79.85 | 40067 | 76.85 | 68.05 | 36028 | 81.92 | 79.04 |
| 01/08/2018 | 98.17 | 98.74 | 98.99 | 99.73 | 33326 | 97.12  | 100.67 | 39559 | 90.12 | 89.96 | 46373 | 76.52 | 83.84 | 46224 | 80.53 | 78.47 |
| 02/08/2018 | 98.37 | 98.98 | 99.20 | 99.72 | 30634 | 84.54  | 104.46 | 40391 | 77.50 | 81.30 | 44780 | 67.62 | 79.54 | 44681 | 70.26 | 77.24 |
| 03/08/2018 | 98.52 | 98.95 | 99.14 | 99.68 | 32153 | 87.56  | 93.57  | 42233 | 83.39 | 91.29 | 44748 | 73.14 | 82.37 | 45236 | 75.51 | 79.96 |
| 04/08/2018 | 98.98 | 99.22 | 99.37 | 99.75 | 34219 | 80.07  | 95.30  | 43696 | 75.94 | 77.18 | 48767 | 68.59 | 75.71 | 49701 | 71.12 | 72.43 |
| 05/08/2018 | 98.79 | 99.27 | 99.43 | 99.81 | 34628 | 81.41  | 92.96  | 43703 | 75.83 | 74.96 | 49822 | 67.84 | 68.45 | 50867 | 69.34 | 73.41 |
| 06/08/2018 | 98.61 | 99.04 | 99.20 | 99.75 | 34460 | 82.71  | 98.09  | 42147 | 77.46 | 83.83 | 46013 | 70.94 | 77.09 | 47268 | 71.77 | 75.54 |
| 07/08/2018 | 98.62 | 99.04 | 99.14 | 99.73 | 36245 | 83.47  | 93.39  | 44302 | 79.57 | 80.57 | 48223 | 73.89 | 76.57 | 48675 | 75.19 | 78.42 |
| 08/08/2018 | 98.77 | 98.92 | 99.14 | 99.76 | 36413 | 84.90  | 101.23 | 45230 | 82.77 | 80.41 | 49950 | 77.64 | 77.33 | 49958 | 79.05 | 77.66 |

PROBA-V\_D9\_QIR-019\_2018-Q3\_v1.0

Quarterly Image Quality Report

Page 44 of 51



| Averages   | 98.80 | 99.17 | 99.34 | 99.76 | 24680 | 77.38 | 92.72  | 30923 | 72.69 | 78.75 | 34172 | 65.98 | 71.18 | 33597 | 68.76 | 73.12 |
|------------|-------|-------|-------|-------|-------|-------|--------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 15/08/2018 | 98.74 | 99.08 | 99.22 | 99.74 | 28772 | 81.65 | 94.85  | 34624 | 76.38 | 81.74 | 36266 | 68.21 | 77.11 | 36283 | 70.17 | 74.52 |
| 14/08/2018 | 98.83 | 99.21 | 99.28 | 99.81 | 24461 | 81.12 | 94.12  | 30170 | 75.16 | 78.84 | 31187 | 68.81 | 70.56 | 32478 | 71.94 | 69.98 |
| 13/08/2018 | 98.88 | 99.34 | 99.44 | 99.78 | 37116 | 83.88 | 92.36  | 46564 | 77.68 | 80.67 | 50496 | 71.02 | 70.38 | 53793 | 72.60 | 69.19 |
| 12/08/2018 | 98.85 | 99.09 | 99.23 | 99.74 | 35578 | 87.30 | 96.73  | 44506 | 83.03 | 81.90 | 47126 | 75.95 | 71.73 | 49687 | 76.94 | 73.64 |
| 11/08/2018 | 98.80 | 99.18 | 99.22 | 99.71 | 34555 | 87.35 | 94.62  | 44317 | 81.87 | 87.40 | 49337 | 75.06 | 75.09 | 51334 | 76.15 | 82.10 |
| 10/08/2018 | 98.84 | 99.21 | 99.34 | 99.75 | 32746 | 81.94 | 102.06 | 42192 | 75.85 | 82.53 | 50149 | 68.03 | 76.55 | 51153 | 70.56 | 71.09 |
| 09/08/2018 | 98.98 | 99.22 | 99.35 | 99.79 | 23779 | 83.97 | 96.74  | 30613 | 79.36 | 77.01 | 35936 | 73.91 | 67.73 | 37588 | 75.74 | 70.94 |

Table 12: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/7/2018 – 15/8/2018.



*Figure 20: Daily average location error in the period from 16/7/2018 – 15/8/2018 (left) and the average daily compliance of all spectral bands (right).* 

PROBA-V\_D9\_QIR-019\_2018-Q3\_v1.0 Quarterly Image Quality Report Page 45 of 51



| Day        | %B    | %R    | %N    | %S     | NB-B  | MU-B   | STD-B  | NB-R  | MU-R   | STD-R  | NB-N  | MU-N  | STD-N  | NB-S  | MU-S  | STD-S  |
|------------|-------|-------|-------|--------|-------|--------|--------|-------|--------|--------|-------|-------|--------|-------|-------|--------|
| 16/08/2018 | 98.59 | 99.03 | 99.32 | 99.75  | 28988 | 82.99  | 96.64  | 36500 | 76.96  | 84.87  | 42635 | 67.29 | 72.30  | 40408 | 69.37 | 77.30  |
| 17/08/2018 | 98.69 | 98.84 | 99.01 | 99.73  | 13600 | 81.40  | 91.67  | 16012 | 76.95  | 77.75  | 17802 | 70.01 | 73.69  | 17573 | 70.99 | 76.57  |
| 18/08/2018 | 98.84 | 99.26 | 99.42 | 99.77  | 24455 | 82.88  | 84.94  | 25397 | 80.45  | 74.04  | 25712 | 76.45 | 65.26  | 23819 | 76.42 | 72.46  |
| 19/08/2018 | 98.61 | 98.85 | 99.07 | 99.82  | 13356 | 90.10  | 102.19 | 15874 | 86.51  | 77.90  | 18686 | 85.34 | 77.46  | 20580 | 82.87 | 66.22  |
| 20/08/2018 | 98.18 | 98.43 | 98.98 | 99.74  | 8937  | 89.02  | 97.62  | 11626 | 87.20  | 81.43  | 14038 | 82.47 | 72.98  | 12770 | 83.70 | 69.33  |
| 21/08/2018 | 98.06 | 98.76 | 98.75 | 99.60  | 12404 | 79.95  | 93.70  | 15444 | 78.29  | 77.37  | 15232 | 80.19 | 119.20 | 11347 | 80.14 | 136.35 |
| 22/08/2018 | 98.50 | 98.72 | 98.85 | 99.59  | 18073 | 79.55  | 89.21  | 19335 | 78.02  | 80.78  | 18885 | 75.35 | 81.12  | 16598 | 76.19 | 92.61  |
| 23/08/2018 | 99.28 | 99.43 | 99.52 | 99.81  | 15377 | 65.74  | 81.27  | 19901 | 60.64  | 76.08  | 20864 | 59.68 | 67.20  | 23142 | 56.84 | 63.27  |
| 24/08/2018 | 98.60 | 99.15 | 99.30 | 99.59  | 24307 | 69.03  | 102.90 | 29322 | 62.70  | 86.88  | 30859 | 58.61 | 75.00  | 30214 | 60.04 | 83.39  |
| 25/08/2018 | 99.01 | 99.29 | 99.19 | 100.00 | 1623  | 74.60  | 74.12  | 1689  | 81.16  | 105.65 | 1116  | 81.12 | 104.74 | 375   | 66.97 | 43.53  |
| 26/08/2018 | 98.79 | 99.23 | 99.33 | 99.76  | 40462 | 69.15  | 96.52  | 49159 | 62.93  | 73.21  | 52541 | 58.47 | 72.00  | 53501 | 59.83 | 72.42  |
| 27/08/2018 | 99.14 | 99.42 | 99.48 | 99.80  | 42625 | 67.49  | 82.12  | 51226 | 63.37  | 72.99  | 53541 | 59.32 | 64.73  | 57199 | 59.97 | 65.24  |
| 28/08/2018 | 98.93 | 99.24 | 99.35 | 99.78  | 39137 | 66.32  | 87.80  | 47003 | 62.47  | 80.38  | 49181 | 57.62 | 69.40  | 53144 | 58.53 | 74.02  |
| 29/08/2018 | 99.00 | 99.42 | 99.53 | 99.80  | 33115 | 63.62  | 93.63  | 40346 | 57.41  | 77.67  | 43044 | 52.17 | 65.37  | 46782 | 53.94 | 67.69  |
| 30/08/2018 | 98.87 | 99.28 | 99.39 | 99.75  | 37951 | 70.15  | 87.12  | 46892 | 64.37  | 73.31  | 48504 | 58.48 | 69.11  | 50747 | 59.52 | 68.60  |
| 31/08/2018 | 98.82 | 99.19 | 99.28 | 99.80  | 28172 | 75.38  | 88.44  | 34800 | 69.72  | 79.14  | 40526 | 62.28 | 73.87  | 40835 | 61.59 | 65.21  |
| 01/09/2018 | 98.85 | 99.24 | 99.39 | 99.79  | 32916 | 80.52  | 87.49  | 40466 | 74.85  | 81.20  | 43263 | 66.79 | 72.45  | 44333 | 66.41 | 70.60  |
| 02/09/2018 | 98.82 | 99.28 | 99.36 | 99.74  | 37157 | 71.56  | 94.54  | 42490 | 64.45  | 71.00  | 44259 | 59.73 | 75.07  | 43023 | 61.89 | 75.11  |
| 03/09/2018 | 99.00 | 99.43 | 99.50 | 99.75  | 38709 | 67.53  | 95.67  | 46860 | 59.84  | 70.82  | 48929 | 55.57 | 70.87  | 49182 | 58.52 | 72.74  |
| 04/09/2018 | 99.00 | 99.34 | 99.46 | 99.75  | 41631 | 67.25  | 88.31  | 50228 | 61.87  | 72.61  | 51498 | 55.93 | 66.97  | 52529 | 59.30 | 72.19  |
| 05/09/2018 | 99.18 | 99.44 | 99.53 | 99.81  | 42350 | 65.31  | 81.36  | 52213 | 59.57  | 71.91  | 57231 | 54.02 | 60.78  | 59426 | 57.51 | 62.09  |
| 06/09/2018 | 98.93 | 99.29 | 99.36 | 99.77  | 37512 | 73.93  | 98.46  | 46260 | 67.28  | 80.70  | 50276 | 61.55 | 71.15  | 51426 | 63.84 | 69.05  |
| 07/09/2018 | 98.93 | 99.36 | 99.38 | 99.74  | 40563 | 74.73  | 91.44  | 50930 | 68.89  | 72.70  | 55567 | 63.24 | 67.94  | 57452 | 65.06 | 76.20  |
| 08/09/2018 | 98.43 | 98.83 | 99.03 | 99.69  | 37975 | 95.20  | 99.02  | 44953 | 92.08  | 88.83  | 46604 | 84.44 | 80.71  | 49975 | 84.11 | 81.54  |
| 09/09/2018 | 98.22 | 98.50 | 98.71 | 99.66  | 31329 | 103.44 | 96.39  | 36844 | 101.09 | 86.68  | 36049 | 96.74 | 82.31  | 38360 | 91.33 | 84.54  |
| 10/09/2018 | 98.24 | 98.55 | 98.60 | 99.66  | 35043 | 108.50 | 99.07  | 41827 | 104.34 | 84.39  | 44759 | 98.25 | 85.03  | 48646 | 96.54 | 82.76  |
| 11/09/2018 | 98.23 | 98.51 | 98.46 | 99.67  | 27420 | 103.33 | 102.58 | 32367 | 99.62  | 90.32  | 30303 | 95.51 | 91.46  | 33505 | 91.98 | 83.84  |
| 12/09/2018 | 98.71 | 99.04 | 98.99 | 99.73  | 27067 | 90.77  | 92.78  | 28820 | 87.89  | 83.05  | 26543 | 85.02 | 88.98  | 30458 | 80.43 | 87.37  |
| 13/09/2018 | 98.95 | 99.18 | 99.27 | 99.77  | 20574 | 80.58  | 82.14  | 24466 | 78.23  | 81.16  | 23041 | 74.31 | 73.18  | 24885 | 72.77 | 69.49  |
| 14/09/2018 | 99.08 | 99.38 | 99.42 | 99.71  | 19074 | 67.22  | 89.90  | 23091 | 64.27  | 70.38  | 25193 | 62.16 | 74.57  | 25563 | 63.54 | 76.12  |
| 15/09/2018 | 99.08 | 99.30 | 99.38 | 99.76  | 24346 | 63.03  | 90.96  | 26849 | 60.68  | 79.58  | 26837 | 57.49 | 71.02  | 28660 | 57.07 | 70.72  |
| Averages   | 98.79 | 99.14 | 99.25 | 99.74  | 35377 | 78.29  | 91.76  | 42563 | 73.57  | 78.91  | 45007 | 68.73 | 73.82  | 46704 | 68.86 | 74.60  |

Table 13: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/8/2018 – 15/9/2018.

PROBA-V\_D9\_QIR-019\_2018-Q3\_v1.0 Quarterly Image Quality Report

Page 46 of 51





*Figure 21: Daily average location error in the period from 16/8/2018 – 15/9/2018 (left) and the average daily compliance of all spectral bands (right).* 



## 2.3.2. Inter-band geometric accuracy

The monthly average inter-band geolocation error for all spectral band combinations was as follows:

| Band pair | Inter-band error [m] |
|-----------|----------------------|
| BLUE-RED  | 32.82, σ = 10.18     |
| BLUE-NIR  | 47.99, σ = 14.06     |
| BLUE-SWIR | 50.44, σ = 13.97     |
| RED-NIR   | 32.75, σ = 10.30     |
| RED-SWIR  | 42.02, σ = 8.87      |
| NIR-SWIR  | 40.35, σ = 7.22      |

Table 14: Inter-band geolocation accuracy for period 16/6/2018 to 15/7/2018 for the combined cameras, at 95% confidence level.

| Band pair | Inter-band error [m] |
|-----------|----------------------|
| BLUE-RED  | 33.14, σ = 9.71      |
| BLUE-NIR  | 49.45, σ = 15.29     |
| BLUE-SWIR | 50.38, σ = 12.59     |
| RED-NIR   | 34.96, σ = 12.31     |
| RED-SWIR  | 42.24, σ = 8.91      |
| NIR-SWIR  | 40.18, σ = 7.49      |

Table 15: Inter-band geolocation accuracy for period 16/7/2018 to 15/8/2018 for the combined cameras, at 95% confidence level.

| Band pair | Inter-band error [m]    |
|-----------|-------------------------|
| BLUE-RED  | 32.34, σ = 9.03         |
| BLUE-NIR  | 49.00, σ = 15.01        |
| BLUE-SWIR | 49.01, σ = 12.89        |
| RED-NIR   | 35.64, σ = 13.79        |
| RED-SWIR  | 40.30, σ = 9.10         |
| NIR-SWIR  | 38.47 <i>,</i> σ = 7.17 |

Table 16: Inter-band geolocation accuracy for period 16/8/2018 to 15/9/2018 for the combined cameras, at 95% confidence level.

For the combined cameras, the inter-band geometric accuracy ranged from 32 - 50 m (standard deviation range is 7 - 15 m), which is 0.09 - 0.15 of a pixel (333 m). This result is slightly better at the high end of the range compared to the previous reporting period. The average inter-band RED-NIR registration accuracy was 34 m, which is similar to previous reporting period.

## **2.3.3.** Multi-temporal geometric accuracy

During this reporting period the multi-temporal compliance of the geometric accuracy was:

- 83.16% for the VNIR sensor (196065 GCPs used),
- 95.10% for the VNIR/SWIR combined (217172 GCPs used).



The multi-temporal sensor compliance has decreased by 0.66% for the VNIR sensor and increased by 0.12% for the combined VNIR/SWIR sensors, compared to the previous reporting period (in which values were 83.82% and 94.98%, respectively).

For the VNIR the multi-temporal geometric accuracy is below the requirements. A map of regions with decreased multi-temporal geometric accuracy is presented in



Figure 22.



Figure 22: Multi-temporal geometric accuracy for the VNIR sensor. Compliant areas are marked in green; areas with accuracy below 95% are marked in red. Grey areas represent no data.



For the combined VNIR/SWIR the multi-temporal geometric accuracy is compliant with the



Figure 23.



Figure 23: Multi-temporal geometric accuracy for the VNIR/SWIR combined. Compliant areas are marked in green; areas with accuracy below 95% are marked in red. Grey areas represent no data.

Over the last full year, the multi-temporal accuracy for VNIR and VNIR/SWIR is 82.78% and 94.86%, respectively.

## 2.4. Geometric ICP file

On 08.09.2016 a new file with validity date set to 01.09.2016 was created.

| ICP filename                             | Description                      |
|------------------------------------------|----------------------------------|
| PROBAV_ICP_GEOMETRIC#LEFT_20160901_V01   | Correction for the gradual       |
| PROBAV_ICP_GEOMETRIC#CENTER_20160901_V01 | degradation observed in the last |
| PROBAV ICP GEOMETRIC#RIGHT 20160901 V01  | week of August and first week of |
|                                          | September 2016.                  |



# **3. Reference documents**

| RD-1 | PROBA-V Commissioning Report Annex 1-Radiometric Calibration Results [N77D7-PV02-US-20-CRPT-Annex1-RadiometricCalibartion-v1_3]                                                                                                                                                                                                     |
|------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| RD-2 | PROBA-V Commissioning Report Annex 2-Geometric Calibration Results [N77D7-PV02-US-20-CRPT-Annex2-GeometricCalibartion-v1_3]                                                                                                                                                                                                         |
| LIT1 | Govaerts Y., Sterckx S. and Adriaensen S. (2013) "Use of simulated reflectances over bright desert target as an absolute calibration reference" Remote Sensing Letters, Vol. 4, Iss. 6, 2013.                                                                                                                                       |
| LIT2 | S. Adriaensen, K. Barker, L. Bourg, M. Bouvet, B. Fougnie, Y. Govaerts, P. Henry, C. Kent, D. Smith, S. Sterckx. "CEOS IVOS Working Group 4: Intercomparison of vicarious calibration methodologies and radiometric comparison methodologies over pseudo-invariant calibration sites A Report to the CEOS/IVOS Working Group", 2012 |
| LIT3 | Sterckx S., Adriaensen S., Livens, L., "Rayleigh, Deep Convective Clouds and Cross Sensor Desert vicarious calibration validation for the PROBA-V mission." IEEE Transactions on Geoscience and Remote Sensing. Inter-Calibration of Satellite Instruments Special Issue. Vol.51:3, 1437 – 1452.                                    |

Table 18: Reference Documents