

QUARTERLY IMAGE QUALITY REPORT

IQR#017

Reporting period from 16/12/2017 to 15/03/2018

Reference: *PROBA-V_D9_QIR-017_2018-Q1_v1.0* Author(s): Sindy Sterckx, Stefan Adriaensen, Iskander Benhadj, Erwin Wolters Version: 1.0 Date: 20/03/2018

DOCUMENT CONTROL

Signatures

Author(s)	Sindy Sterckx, Stefan Adriaensen, Erwin Wolters, Iskander Benhadj
Reviewer(s)	Dennis Clarijs
Approver(s)	Dennis Clarijs
Issuing authority	VITO N.V.

Change record

Release	Date	Pages	Description	Editor(s)/Reviewer(s)
1.0	20/03/2018	All	Initial version	

TABLE OF CONTENT

1. RADI	OMETRIC IMAGE QUALITY	4
1.1. Summ	ary	
1.2. Assess	sment of the radiometric accuracy	5
1.2.1.	Absolute radiometric accuracy	5
1.2.1.3	1. Libya-4 desert calibration	5
1.2.1.2	2. Rayleigh calibration	
1.2.2.	Inter-band radiometric accuracy	
1.2.2.2	1. Calibration over deep convective clouds (DCC)	
1.2.3.	PROBA-V Multi-temporal radiometric accuracy	
1.2.3.1	1. Degradation model	
1.2.3.2	2. Lunar calibration	
1.3. Dark o	urrent	
1.3.1.	Methodology	
1.3.2.	VNIR results	
1.3.3.	SWIR results	
1.4. High F	requency Equalisation/Striping	
1.5. Bad p	xels	
1.6. Radio	metric ICP file	
2 050		20
2.1. Summ	ary	
2.2. Assess	sment of the geometric accuracy on L1C data	
2.3. Assess	sment of the geometric accuracy on L2 data	
2.3.1.	Absolute geometric accuracy	
2.3.2.	Inter-band geometric accuracy	
2.3.3.	Multi-temporal geometric accuracy	
2.4. Geom	etric ICP file	

3.	REFERENCE DOCUMENTS	5	1
----	---------------------	---	---

1. Radiometric Image Quality

1.1. Summary

As the calibration results for the SWIR strips of the RIGHT camera continues to show an overcorrection of the degradation, a degradation model is since 2018 no longer applied to the SWIR strips of the right camera.

A slight increase is observed in the DCC interband calibration results for the NIR strip of all cameras. It is currently unclear what is causing this trend.

For the LEFT and CENTER blue strips calibration results are relatively stable over the recent months and therefore the applied degradation model is assumed to be still valid

During Q1 of 2018 one new bad pixel (i.e. Left SWIR1 PixelID 104)) was identified.

1.2. Assessment of the radiometric accuracy

1.2.1. Absolute radiometric accuracy

The absolute radiometric calibration requirement for PROBA-V specifies a 5 % absolute accuracy. This requirement is assessed through vicarious calibration over Libya-4 desert site and Rayleigh calibration zones.

1.2.1.1. Libya-4 desert calibration

Methodology

The nominal approach for assessing the absolute radiometric accuracy relies on the comparison between cloud-free TOA reflectance as measured over the Libya-4 desert site by PROBA-V and the modelled TOA reflectance values, following the approach described in [LIT1]. Validation of the approach using various satellite data (i.e. AQUA-MODIS, MERIS, AATSR, PARASOL, SPOT-VGT) has shown that absolute calibration over the Libya-4 desert is achievable with this approach with an accuracy of 3% [LIT1, LIT2].

Results

In Figure 1, Figure 3 and Figure 5 the monthly averaged results $(avg(\rho_{TOA}^{k,ProbaV(Acom)}/\rho_{TOA}^{k,model}))$ and its standard deviation are given for respectively LEFT, CENTER and RIGHT camera. The individual area-averaged results are given in Figure 2, Figure 4 and Figure 6 with a 3 % error bar (as expected uncertainty for an individual result) for respectively VNIR and SWIR strips.

Results are obtained based on the **<u>Collection 1</u>** ICP files.

As the calibration results for the SWIR strips of the RIGHT camera continues to show an overcorrection of the degradation, it was decided to no longer apply a degradation model for the RIGHT SWIR strips. Since 2018 a degradation model is no longer in use of for the right SWIR strips.

Figure 1. Libya-4 desert calibration results: LEFT monthly averaged results (Collection 1)

Figure 2. Libya-4 desert calibration results: LEFT individual results (Collection 1)

Figure 3. Libya-4 desert calibration results: CENTER monthly averaged results (Collection 1)

Figure 4. Libya-4 desert calibration results: CENTER individual results (Collection 1)

Figure 5. Libya-4 desert calibration results: RIGHT monthly averaged results (Collection 1)

Figure 6. Libya-4 desert calibration results: RIGHT individual results (Collection 1)

1.2.1.2. Rayleigh calibration

Methodology

The Rayleigh calibration approach is an absolute calibration method for BLUE and RED bands. The primary assumption of the approach is that the ocean does not contribute to the Top-Of-Atmosphere (TOA) signal in the NIR. The contribution of aerosol scattering is derived from the **NIR reference band** where molecular scattering is negligible. The aerosol content estimated from the NIR band is then transferred to the BLUE and RED band to model the TOA radiance with a radiative transfer code. The simulated radiance values are then compared with the measured values.

Results

The scene averaged Rayleigh results ($(\rho_{TOA}^{k,ProbaV(Acom)}/\rho_{TOA}^{k,model})$) (with a 4 % error bar as rough indication of uncertainty of one individual result) obtained since January 2014 for LEFT, CENTER and RIGHT camera are given in respectively Figure 7, Figure 8 and Figure 9.

Results are obtained using the **<u>Collection 1 ICP</u>** files.

No significant trend is visible in the Rayleigh calibration results.

Figure 7. Rayleigh absolute calibration results: LEFT camera (Collection 1)

Figure 8. Rayleigh absolute calibration results: CENTER camera (Collection 1)

Figure 9. Rayleigh absolute calibration results: RIGHT camera (Collection 1)

1.2.2. Inter-band radiometric accuracy

The inter-band radiometric calibration requirement for PROBA-V specifies a 3 % inter-band accuracy. This requirement is assessed through vicarious calibration over deep convective clouds.

1.2.2.1. Calibration over deep convective clouds (DCC)

Methodology

The DCC approach is an inter-band calibration method. It makes use of bright, thick, high altitude, convective clouds over oceanic sites. Their reflective properties are spectrally flat in visible and near-infrared and the only contributions to the observed signal are from the cloud reflectance, molecular scattering and ozone absorption which can be modelled with a radiative transfer code. The cloud reflectance in the non-absorbing VNIR bands is mainly sensitive to the cloud optical thickness. The DCC method uses the TOA reflectance in the 'reference' RED band to estimate cloud optical thickness assuming a fixed ice particle model. The derived cloud optical thickness is then used to model using a radiative transfer code the TOA reflectance for the BLUE and NIR band.

The method is not suited for the SWIR band as clouds are no longer spectrally uniform in this spectral region.

Results

The DCC inter-band calibration is defined by reference to the used RED reference band. The average DCC inter-band calibration result per month (from March 2015 to March 2018) is given in Figure 10 for all cameras using the **collection 1 ICP files**.

The LEFT and CENTER BLUE calibration result seems to be more stable since the application of the new degradation model (active since September 2017).

A slight increase is observed in the DCC interband calibration results for the NIR strip of all cameras. It is currently unclear what is causing this trend.

Figure 10. DCC inter-band calibration results: LEFT, CENTER and RIGHT camera

1.2.3. PROBA-V Multi-temporal radiometric accuracy

1.2.3.1. Degradation model

As the calibration results for the SWIR strips of the RIGHT camera continues to show an overcorrection of the degradation, a degradation model is since 2018 no longer applied to the SWIR strips of the right camera.

In Table 1 the applied degradation model correction is given. This linear degration model is being applied for collection 1 since start of the operational phase (i.e. October 2013). A re-evaluation of the coefficients of the SWIR degradation model was performed in summer 2017. Since Jan 2018 a degradation model is no longer applied to the RIGHT SWIR strips.

degradation model ICP Since jan 2018 until aug 2017 since sept 2017 SWIR1 LEFT -0.087 -0.087 -0.087 SWIR2 LEFT -0.104 -0.104 -0.104 SWIR3 LEFT -0.097 -0.097 -0.097 -0.093 SWIR1 CENTER -0.093 -0.093 SWIR2 CENTER -0.092 -0.092 -0.092 SWIR3 CENTER -0.086 -0.086 -0.086 NA SWIR1 RIGHT -0.077 -0.106 NA SWIR2 RIGHT -0.143-0.122 NA SWIR3 RIGHT -0.122 -0.078

Table 1 SWIR degradation model: applied linear trend/month

A degradation model is used to update the absolute calibration coefficients of the LEFT and RIGHT BLUE since May 2017. A re-evaluation of the coefficients of the degradation model was performed in summer 2017. Since then no changes have been made to the model. In Table 2 the coefficients are given.

Table 2 Degradation model BLUE LEFT and CENTER camera: applied linear trend/month

	Linear trend/month (%)								
	Degradation model ICP	Degradation model ICP							
STRIP	may 2017-aug 2017	since sept 2017							
BLUE LEFT	-0.028	-0.036							
BLUE RIGHT	-0.011	-0.034							

1.2.3.2. Lunar calibration

The Lunar calibration results for the VNIR CENTER camera bands, normalised to June 2013, are given in Figure 11. The results are given based on the **collection 1 ICP** files. For the SWIR center 2 strip, the processing is still under investigation. Therefore no results are given for the CENTER SWIR2 strip.

Similarly as in the Libya-4 CENTER RED results an increase in responsivity is observed in the lunar CENTER RED results and a degradation in the BLUE calibration results, whereas the results of the NIR strip seems to stable over time.

Figure 11. Lunar Calibration results CENTER camera normalised to June 2013 (collection 1 ICP files)

1.3. Dark current

1.3.1. Methodology

- Monthly difference plots :
 - All dark current results obtained during a period of one month for observations performed with a long integration time are averaged per pixel. This gives for each pixel the monthly averaged dark current, expressed **in LSB/s**, and its standard deviation.
 - The dark current results and its standard deviation expressed in LSB/s are converted to LSB using a maximum Integration Time for nominal acquisitions. For VNIR strips 0.006s is used. For SWIR strips 0.02s.
 - The differences between months (i.e. Month3-Month2, Month2-Month1) are calculated. This is done for both the dark current and the stdev. Differences are visualized in plots in blue the dark current difference in LSB is plotted, in red the standard deviation difference. This latter is an indicator of changes in the dark current noise between months.

As mentioned in the previous quarterly report (IQR#005) the integration time used for the SWIR dark current acquisitions has been decreased from 3s to 0.2 s since 2015.

1.3.2. VNIR results

Monthly difference plots for VNIR dark currents are given in Figure 12, Figure 13 and Figure 14 for respectively LEFT, CENTER and RIGHT camera.

Dark current differences for the VNIR bands are well below 1 DN.

Figure 12. LEFT camera VNIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

Figure 13. CENTER camera VNIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

Figure 14. RIGHT camera VNIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

1.3.3. SWIR results

Monthly difference plots for SWIR dark currents are given in Figure 15, Figure 16 and Figure 17 for respectively LEFT, CENTER and RIGHT camera.

A dark current outlier analysis is performed for pixels having for at least one month a dark current expressed in LSB larger than the DC THRESHOLD. This DC THRESHOLD is set to 4 LSB. For those pixels the following dark current pixel statuses are given:

- Both monthly differences > 4 LSB ? Quality is "H DC BAD"
- One monthly difference > 4 LSB ? Quality is "H DC NOK".
- Both monthly differences < 4 LSB ? Quality is "H DC OK"</p>

In Table 3, Table 4 and

	RIGHT SWIR																	
		OCT-NC	V-DEC				NOV-DEC-JAN						DEC-JAN-FEB					
144	H DC NOK	544	H DC BAD	252 pixels	H DC OK	29	4 H DC BAD	438	H DC NOK	752	H DC NOK	300	H DC BAD	333pixels	H DC OK	163	H DC NOK	
622	H DC NOK	815	H DC BAD			17	2 H DC BAD	334pixels	H DC OK	241 pixels	H DC OK	144	H DC NOK			752	H DC NOK	
894	H DC NOK	438	H DC BAD			90	4 H DC NO	(446	H DC NOK			244pixels	H DC OK	
307pixels	H DC OK	354pixels	H DC OK			294pixels	H DC OK					622	H DC NOK					
												873	H DC NOK					
												296pixels	H DC OK					

Table 5 the resulting SWIR dark current status during the last 3 months is reported for respectively LEFT, CENTER and RIGHT camera.

Similarly as in previous reporting periods jumps in the dark current values of a few SWIR pixels is observed, requiring regular updates of ICP dark current values. In the previous reporting period a significant increase (i.e. monthly differences > 4 LSB)) in the dark current values of the LEFT SWIR3 was observed. This seems to be a bit more stabilised now.

Figure 15. LEFT camera SWIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

Figure 16. CENTER camera SWIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

Figure 17. RIGHT camera SWIR: Monthly difference (Nov 2017-FEB 2018) in dark current (Blue) and standard deviation (Red) of the monthly averaged results.

	LEFT SWIR																
CAA	D4	Oct-N	ov-Dec	C14/	D2	Nov-Dec-jan				C14	402	C) A	404	Dec-J	an-Feb		102
28 H	LDC BAD	192	H DC NOK	20	H DC BAD	28	H DC BAD	752	H DC BAD	23	H DC BAD	28	H DC BAD	702	H DC BAD	34	H DC BAD
298 H	DC BAD	305	H DC NOK	23	H DC BAD	345	H DC BAD	231	H DC NOK	34	H DC BAD	345	H DC BAD	794	H DC BAD	90	H DC BAD
345 H	I DC BAD	351	H DC NOK	34	H DC BAD	923	H DC BAD	702	H DC NOK	90	H DC BAD	508	H DC BAD	231	H DC NOK	115	H DC BAD
956 H	DC BAD	752	H DC NOK	90	H DC BAD	956	H DC BAD	794	H DC NOK	115	H DC BAD	956	H DC BAD	752	H DC NOK	438	H DC BAD
9/4 H	DC BAD	753 240nivola		115	H DC BAD	9/4	H DC NOK	238pixels	H DC OK	119	H DC BAD	222	H DC NOK	858 220nivols		564	H DC BAD
213 290 H	I DC NOK	24501XE13	TIDE OK	150	H DC BAD	219	H DC NOK			273	H DC BAD	336	H DC NOK	zoopixeis	TIDEOK	725	H DC BAD
587 H	DC NOK		-	159	H DC BAD	508	H DC NOK			438	H DC BAD	575	H DC NOK			729	H DC BAD
678 <mark>H</mark>	I DC NOK			172	H DC BAD	587	H DC NOK			494	H DC BAD	923	H DC NOK			20	H DC NOK
923 H	DC NOK			173	H DC BAD	974	H DC NOK			564	H DC BAD	168pixels	H DC OK			23	H DC NOK
162pixels H	I DC OK			198	H DC BAD	165pixels	H DC OK			568	H DC BAD	-				35	H DC NOK
				210	H DC BAD					723	H DC BAD					119	H DC NOK
				273	H DC BAD					764	H DC BAD					121	H DC NOK
				276	H DC BAD					866	H DC BAD					131	H DC NOK
				327	H DC BAD					20	H DC NOK					150	H DC NOK
				336	H DC BAD					35	H DC NOK	_				159	H DC NOK
				370	H DC BAD					138	H DC NOK					216	H DC NOK
				406	H DC BAD					150	H DC NOK					231	H DC NOK
				419	H DC BAD					159	H DC NOK					273	H DC NOK
				423	H DC BAD					164	H DC NOK	_				276	H DC NOK
				438	H DC BAD					172	H DC NOK	-				370	H DC NOK
+				4/1						173		-				404 171	
+				494	H DC BAD					216	H DC NOK					4/1	H DC NOK
				495	H DC BAD					230	H DC NOK					495	H DC NOK
				510	H DC BAD					231	H DC NOK					510	H DC NOK
\vdash				518	H DC BAD					276	H DC NOK					563	H DC NOK
+			-	553	H DC BAD					327	H DC NOK	-	-			591	
				568	H DC BAD					330	H DC NOK					615	H DC NOK
				591	H DC BAD					381	H DC NOK					677	H DC NOK
				592	H DC BAD					406	H DC NOK					699	H DC NOK
				615	H DC BAD					419	H DC NOK					740	H DC NOK
				617	H DC BAD	-				423	H DC NOK					744	H DC NOK
				630	H DC BAD					471		-				753	
				660	H DC BAD					493	H DC NOK					761	H DC NOK
				675	H DC BAD					495	H DC NOK					807	H DC NOK
				695	H DC BAD					510	H DC NOK					856	H DC NOK
				704	H DC BAD	-				518	H DC NOK	-				866	H DC NOK
				707	H DC BAD					545	H DC NOK	-				897	
				721	H DC BAD					563	H DC NOK	-				935	H DC NOK
				740	H DC BAD					591	H DC NOK					936	H DC NOK
				753	H DC BAD					592	H DC NOK					943	H DC NOK
				761	H DC BAD					603	H DC NOK	_				879pixels	H DC OK
				764	H DC BAD					615	H DC NOK						
				818	H DC BAD					630	H DC NOK						
				824	H DC BAD					658	H DC NOK						
				849	H DC BAD					660	H DC NOK						
+				856	H DC BAD					675	HDCNOK						
+			-	906	H DC BAD					695	H DC NOK		-				
				907	H DC BAD					704	H DC NOK						
			-	935	H DC BAD					707	H DC NOK						
\vdash			-	948	H DC BAD					721	H DC NOK						
\vdash			<u> </u>	998	H DC BAD					740	HDCNOK						
				1009	H DC BAD					761	H DC NOK						
				35	H DC NOK					769	H DC NOK						
\vdash				58	H DC NOK					807	H DC NOK						
\vdash				85	H DC NOK					818	H DC NOK	<u> </u>					
\vdash				119						824	H DC NOK	H					
\vdash				104	H DC NOK					856	H DC NOK						
				188	H DC NOK					871	H DC NOK						
				226	H DC NOK					897	H DC NOK						
\vdash				230	H DC NOK					906	H DC NOK						
\vdash				455	H DC NOK	<u> </u>				907	HDCNOK	<u> </u>					
\vdash				475	H DC NOK					935	H DC NOK						
				545	H DC NOK					948	H DC NOK						
				563	H DC NOK					998	H DC NOK						
\vdash				725	H DC NOK					1007	H DC NOK						
\vdash				734	H DC NOK	<u> </u>				1009 844nivels	HDCOK	<u> </u>					
++			-	759	H DC NOK					STIPIACIS			-				
				772	H DC NOK												
				866	H DC NOK												
\vdash				957	H DC NOK	<u> </u>						<u> </u>					
\vdash				999 813nivele	H DC OK	<u> </u>						<u> </u>					
		1		orohivel2			1	1	1		1				1	1	1

Table 3. LEFT SWIR dark current pixel outliers (ID L1A).

	CENTER SWIR																
		OCT-N	OV-DEC					NOV-D	EC-JAN					DEC-J/	AN-FEB		
SV	VIR1	SW	IR2	SW	/IR3	SM	/IR1	SWIR2		SWIR3		SWIR1		SWIR2		SWIR3	
1021	H DC BAD	831	H DC BAD	30	H DC BAD	566	H DC NOK	831	H DC NOK	957	H DC BAD	654	H DC BAD	533	H DC NOK	30	H DC NOK
419	H DC NOK	704	H DC NOK	99	H DC BAD	654	H DC NOK	980	H DC NOK	30	H DC NOK	728	H DC NOK	596	H DC NOK	99	H DC NOK
545	H DC NOK	900	H DC NOK	131	H DC BAD	657	H DC NOK	203pixels	H DC OK	99	H DC NOK	481	H DC NOK	831	H DC NOK	131	H DC NOK
547	H DC NOK	217pixels	H DC OK	266	H DC BAD	728	H DC NOK			131	H DC NOK	545	H DC NOK	980	H DC NOK	364	H DC NOK
657	H DC NOK			364	H DC BAD	1021	H DC NOK			266	H DC NOK	566	H DC NOK	205pixels	H DC OK	579	H DC NOK
671	H DC NOK			579	H DC BAD	171pixels	H DC OK			348	H DC NOK	1021	H DC NOK			640	H DC NOK
180pixels	H DC OK			640	H DC BAD					364	H DC NOK	175pixels	H DC OK			682	H DC NOK
				763	H DC BAD					579	H DC NOK					890	H DC NOK
				868	H DC BAD					640	H DC NOK					957	H DC NOK
				890	H DC BAD					763	H DC NOK					994	H DC NOK
				957	H DC BAD					868	H DC NOK					118pixels	H DC OK
				994	H DC BAD					890	H DC NOK						
				152	H DC NOK					994	H DC NOK						
				348	H DC NOK					114pixels	H DC OK						
				397	H DC NOK												
				597	H DC NOK												
				697	H DC NOK												
				804	H DC NOK												
				1016	H DC NOK												
	110pixels H DC OK																

Table 4. CENTER SWIR dark current pixel outliers (ID L1A)

	RIGHT SWIR																
		OCT-NC	V-DEC				NOV-DEC-JAN					DEC-JAN-FEB					
144	H DC NOK	544	H DC BAD	252 pixels	H DC OK	294	H DC BAD	438	H DC NOK	752	H DC NOK	300	H DC BAD	333pixels	H DC OK	163	H DC NOK
622	H DC NOK	815	H DC BAD			172	H DC BAD	334pixels	H DC OK	241 pixels	H DC OK	144	H DC NOK			752	H DC NOK
894	H DC NOK	438	H DC BAD			904	H DC NOK					446	H DC NOK			244pixels	H DC OK
307pixels	H DC OK	354pixels	H DC OK			294pixels	H DC OK					622	H DC NOK				
												873	H DC NOK				
												296pixels	H DC OK				

Table 5. RIGHT SWIR dark current pixel outliers (ID L1A)

1.4. High Frequency Equalisation/Striping

Methodology

The high frequency interpixel variation or equalization differences are estimated on radiometrically corrected images i.e. the radiometric model is applied including the equalization coefficients (gi). If they are correct, they remove all the pixel to pixel non-uniformity. In principle the multi-angular method then detects no non-uniformities, only noise if systematic non-uniformities are detected, they can be viewed as corrections to the existing equalization coefficients (Δgi , high). Working like this is in fact an advantage as it focuses entirely on the changes from the existing coefficients. The coefficients can be updated by multiplying the new estimates ("correction coefficients") with the old ones:

 $gi, new = gi x \Delta gi, high$

The Δgi , high are estimated as follows:

- An input image is taken, containing as little variation in the scene as possible. Image containing uniform snow areas over Antarctica or Greenland during local summer are ideal for VNIR bands. For SWIR bands images over homogeneous desert sites (e.g. Libya4) are used.
- Low pass image: is obtained by calculating an averaging filter in the along track direction.
- HFRR (high frequency relative response) image is the ratio between the original and the low pass image. It contains only the high frequency information.
- In the HFRR image, the trimmed mean is calculated in the along track direction (using all pixel values of a column).
- The average and standard deviation over the considered time period is calculated.

Results

Multi-angular calibration acquisitions have been performed for the VNIR strips over Antarctica. The VNIR High Frequency/striping results for LEFT, CENTER and RIGHT camera are given in respectively Figure 22, Figure 23 and Figure 24.

The graphs at the top show the high frequency profile values ($\Delta gi, high$) per pixel in red, and the values plus and minus 1 standard deviation (estimated using the robust MAD statistic) in light blue. The graphs at the bottom show scattergrams which reveal the relation between the estimated $\Delta gi, high$ values and their stdevs. The scattergrams allow inspecting in a convenient way which pixels can be considered as outliers. The $\Delta gi, high$ VNIR values are low.

Compared to previous reporting there are some more pixels mainly in the RIGHT camera with $\Delta gi, high$ values larger than 1.005. This might be due to the fact that nominal scenes from Antarctica were used while for previous reporting period special calibration scenes focusing on specific homogeneous areas were used.

Figure 18. HF VNIR equalisation results VNIR LEFT Feb 2018

Figure 19. HF equalisation results VNIR CENTER: FEB 2018

Figure 20. HF equalisation results VNIR RIGHT: FEB 20187

1.5. Bad pixels

One new bad pixel was identified in this reporting period.

	Reporting period Mid-Dec 2017- Mid-March 2018																
	стрір		pixel numbers (ID L1 A)														
CAIVIERA	51111	NEW BAD	EW BAD BAD (from previous periods)														
left	swir1	104	28	298	345	352	644	956									
left	swir2		711	863													
left	swir3		90	172	250	370	419	438	568	759	761						
center	swir1		1021														
center	swir2		57	295	769	831	900										
center	swir3		29	30	99	131	448	476	579	640	763	804	889	890	917	938	994
right	swir1																
right	swir2		14	438	470												
right	swir3																

Table 6: Overview Bad pixels

1.6. Radiometric ICP file

The updates to the radiometric ICP file used within the user segment for the processing of the nominal PROBA-V data by PF are listed in the Table 9 for collection 1.

PROBAV_X_R_000_YEARMN01_ 101 .xml*	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20161201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20161201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20161201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20161201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20170101_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20170120_01.xml	SWIR status map updated : 1 bad pixel added
PROBAV_X_R_000_20170201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20170220_01.xml	SWIR status map updated : 1 bad pixel added

PROBAV_X_R_000_20170301_01.xml	Update dark currents Update of SWIR absolute following linear degradation model**
PROBAV_X_R_000_20170401_01.xml	Update dark currents Update of SWIR absolute following linear degradation model** SWIR status map updated : 1 bad pixel added
PROBAV_X_R_000_2017051_01.xml	Update dark currents Update of SWIR absolute following linear degradation model** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model***
PROBAV_X_R_000_20170601_01.xml	Update dark currents Update of SWIR absolute following linear degradation model** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model***
PROBAV_X_R_000_20170701_01.xml	Update dark currents Update of SWIR absolute following linear degradation model** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model*** SWIR status map updated : 1 bad pixel added
PROBAV_X_R_000_20170801_01.xml	Update dark currents Update of SWIR absolute following linear degradation model** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model*** SWIR status map updated : 2 bad pixel added
PROBAV_X_R_000_20170901_01.xml	Update dark currents Update of SWIR absolute following linear degradation model***, new coef applied for RIGHT SWIR strips**** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef **** SWIR status map updated : 2 bad pixel added

PROBAV_X_R_000_20171001_01.xml	Update dark currents Update of SWIR absolute following linear degradation model***, new coef applied for RIGHT SWIR strips**** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef ****
PROBAV_X_R_000_20171101_01.xml	Update dark currents Update of SWIR absolute following linear degradation model***, new coef applied for RIGHT SWIR strips**** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef ****
PROBAV_X_R_000_20171201_01.xml	Update dark currents Update of SWIR absolute following linear degradation model***, new coef applied for RIGHT SWIR strips**** Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef ****
PROBAV_X_R_000_20180101_01.xml	Update dark currents Update of LEFT and CENTER SWIR absolute following linear degradation model***; No update of RIGHT SWIR absolute cal Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef ****
PROBAV_X_R_000_20180201_01.xml	Update dark currents Update of LEFT and CENTER SWIR absolute following linear degradation model***; No update of RIGHT SWIR absolute cal Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef ****
PROBAV_X_R_000_20180301_01.xml	Update dark currents Update of LEFT and CENTER SWIR absolute following linear degradation model***; No update of RIGHT SWIR absolute cal Update of LEFT BLUE and CENTER BLUE absolute calibration coefficients following linear degradation model with new coef

* YEAR :2013-2016; MN:01-12; ** Applied Linear trend (in%)/month : SWIR1 LEFT: -0.087;SWIR2 LEFT: -0.104;SWIR3 LEFT: -0.097;SWIR1 CENTER: -0.093;SWIR2 CENTER: -0.092;SWIR3 CENTER: -0.086;SWIR1 RIGHT: -0.106;SWIR2 RIGHT: -0.143;SWIR3 RIGHT: -0.122. *** Applied linear trend (in %) /month: BLUE LEFT: -0.028, BLUE CENTER: -0.011, **** Applied linear trend (in %) /month: BLUE LEFT: -0.035, BLUE CENTER: -0.034, *****New coef for RIGHT SWIR strips: SWIR1 RIGHT: -0.077; SWIR2 RIGHT: -0.122; SWIR3 RIGHT: -0.078

 Table 7: Radiometric ICP-file updates Collection 1

2. Geometric Image Quality

2.1. Summary

The quarterly average location error (ALE) over the period 16/12/2017 - 15/03/2018 was 76 m (16 = 84 m) for all spectral bands (combined cameras). Compared to the previous reporting period the ALE has increased by 6%.

The total number of chips per day and per spectral band used for the geometric accuracy analysis decreased by 29% on average compared to the previous reporting period.

The daily average location error compliance (ALE < 300m) was 99.15%, which is 0.11% lower than in the previous reporting period. The inter-band geometric accuracy was 34 m – 58 m (σ = 9 – 22 m), which is 0.10 – 0.17 of a pixel (333 m), a result that is comparable to the previous reporting period.

The multi-temporal geometric accuracy was 78.83% (-6.85% compared to previous quarter) for the VNIR and 94.07% (-1.46% compared to previous quarter) for the combined VNIR/SWIR. The multi-temporal accuracies over the last full year are 82.37% and 94.94% for VNIR and VNIR/SWIR, respectively.

The geometric ICP file generated on 8/9/2016, valid from 1/9/2016 has remained valid throughout the reporting period.

2.2. Assessment of the geometric accuracy on L1C data

The absolute location error (ALE) and accompanying standard deviation of the Level1C data is presented in the tables below for each camera, spectral band/strip and reporting month.

CAMERA 1 Mean and standard deviation ALE [m]						
Strip\Period	16/12/2017 - 15/1/2018	16/1/2018 - 15/2/2018	16/2/2018 - 15/3/2018			
BLUE	57.72, σ = 34.41	58.62 <i>,</i> σ = 34.64	51.98, σ = 30.61			
RED	58.68, σ = 35.87	59.66, σ = 36.09	52.14, σ = 31.02			
NIR	60.49 <i>,</i> σ = 37.59	63.49, σ = 38.76	57.74, σ = 35.72			
SWIR1	88.94 <i>,</i> σ = 55.72	85.69, σ = 52.60	79.29, σ = 49.24			
SWIR2	61.29, σ = 35.09	63.11, σ = 36.27	57.11, σ = 31.95			
SWIR3	55.42, σ = 31.99	59.40, σ = 34.43	51.69, σ = 29.30			

CAMERA 2 Mean and standard deviation ALE [m] Strip\Period 16/12/2017 - 15/1/2018 16/1/2018 - 15/2/2018 16/2/2018 - 15/3/2018 50.82, σ = 29.55 BLUE 70.59, σ = 39.20 63.39, σ = 36.50 RED 70.92, $\sigma = 38.92$ 62.22, $\sigma = 36.42$ 49.01, $\sigma = 28.13$ NIR 52.46, σ = 30.83 68.20, σ = 38.11 64.86, σ = 37.73 SWIR1 68.98, σ = 38.76 67.27, σ = 39.21 55.98, σ = 33.66 55.71, σ = <u>33.73</u> SWIR2 69.34, σ = 40.02 67.36, σ = 40.29 SWIR3 68.94, $\sigma = 40.72$ 68.46, $\sigma = 40.97$ 57.60, $\sigma = 35.11$

Table 8: Mean absolute location error for camera 1.

Table 9: Mean absolute location error for camera 2.

CAMERA 3 Mean and standard deviation ALE [m]						
Strip\Period	16/12/2017 - 15/1/2018	16/1/2018 - 15/2/2018	16/2/2018 - 15/3/2018			
BLUE	65.03, σ = 38.25	79.59, σ = 48.42	84.43, σ = 43.94			
RED	69.79 <i>,</i> σ = 42.60	90.63 <i>,</i> σ = 54.64	92.67, σ = 48.39			
NIR	66.74 <i>,</i> σ = 42.57	81.37, σ = 54.22	85.87, σ = 51.23			
SWIR1	66.09, σ = 41.10	74.93, σ = 49.86	76.27, σ = 45.19			
SWIR2	72.19, σ = 45.63	85.96, σ = 55.91	85.49, σ = 49.59			
SWIR3	92.22, σ = 59.47	112.96, σ = 74.81	111.15, σ = 67.05			

Table 10: Mean absolute location error and standard deviation (σ) for camera 3.

In the reporting period the average location error of the Level 1C data was 69.4 m, which is 4.8 m (7.4%) higher than in the previous quarter.

2.3. Assessment of the geometric accuracy on L2 data

2.3.1. Absolute geometric accuracy

The daily summary of the L2 data absolute location error for all spectral bands is presented in the tables and figures below for the three reporting months:

- from 16/12/2017 15/1/2018
- from 16/1/2018 15/2/2018
- from 16/2/2018 15/3/2018

The tables list:

- The day of the measurement in format dd-mm-yy
- The daily achieved compliance (%B) for the BLUE band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%R) for the RED band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%N) for the NIR band (% of GCP where ALE <= 300m)
- The daily achieved compliance (%S) for the SWIR band (% of GCP where ALE <=450m)
- The number of GCP per day (NB-B) used to derive the absolute location error ALE for the BLUE band
- The daily average ALE (in m) for the BLUE band (MU-B)
- The daily ALE standard deviation (in m) for the BLUE band (STD-B)
- The number of GCP per day (NB-R) used to derive the absolute location error ALE for the RED band
- The daily average ALE (in m) for the RED band (MU-R)
- The daily ALE standard deviation (in m) for the RED band (STD-R)
- The number of GCP per day (NB-N) used to derive the absolute location error ALE for the NIR band
- The daily average ALE (in m) for the NIR band (MU-N)
- The daily ALE standard deviation (in m) for the NIR band (STD-N)
- The number of GCP per day (NB-S) used to derive the absolute location error ALE for the SWIR band
- The daily average ALE (in m) for the SWIR band (MU-S)
- The daily ALE standard deviation (in m) for the SWIR band (STD-S)

15-01-18

Averages

98.85

98.77

99.43

99.30

99.44

99.31

proba-v

Table 11: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/12/2017 to 15/1/2018.

32550

29096

88.03

93.87

PROBA-V D9 QIR-017 2018-Q1 v1.0

99.71

99.72

Quarterly Image Quality Report

62.6

69.58

76.2

74.74

30729

27988

Page 42 of 51

61.73

67.49

78.79

75.13

30541

27671

65.42

71.98

STD-S

80.21

80.83

74.58

82.55

73.2

78.65

81.76

75.84

78.25

87.93

92.29

84.74

89.7

77.65

82.64

73.89

79.17

87.26

80.64

78.06

73.1

73.68

74.89

89.71

91.3

88.34

84.09

72.42

69.17

83.68

78.1

80.59

30136

25964

70.56

77.53

Figure 21: Daily average location error in the period from 16/12/2017 – 15/1/2018 (left) and the average daily compliance of the spectral bands (right).

Day	%В	%R	%N	%S	NB-B	MU-B	STD-B	NB-R	MU-R	STD-R	NB-N	MU-N	STD-N	NB-S	MU-S	STD-S
16-01-18	98.74	99.3	99.28	99.78	30131	73.79	92.9	33487	67.52	75.21	31838	65.03	70.07	30443	68.86	80.28
17-01-18	99.23	99.55	99.47	99.82	30180	70.16	84.31	34090	65.14	66.52	32576	64.95	72.15	32370	69.06	71.55
18-01-18	98.94	99.38	99.42	99.74	28848	75.8	91.45	32324	70.55	80.25	31348	69.44	79.64	32549	73.33	78.59
19-01-18	98.68	99.27	99.29	99.66	26118	73.89	108.93	30428	65.15	85.97	28968	64.62	79.76	30230	67.23	84.17
20-01-18	98.83	99.44	99.38	99.74	29433	72.24	89.69	33747	64.2	74.91	31383	63.1	74.52	31454	65.72	75.1
21-01-18	99.1	99.49	99.49	99.75	29890	66.84	80.26	34420	60.14	68.47	32367	59.38	60.76	31313	63.62	74.53
22-01-18	99.18	99.57	99.53	99.75	26559	65.27	84.9	31761	58.82	73.63	30171	58.81	70.88	31393	62.16	81.18
23-01-18	98.73	99.47	99.45	99.71	28017	70.91	105.83	32435	62.55	77.13	31325	61.29	73.51	31999	62.91	76.17
24-01-18	98.89	99.28	99.33	99.68	31186	71.85	94.35	34043	65.41	76.98	32524	64.24	72.26	32581	65.53	79
25-01-18	98.64	99.28	99.27	99.71	27582	73.8	93.86	29933	67.62	76.89	29492	65.32	70.24	26968	68.07	83.09
26-01-18	99.09	99.53	99.56	99.75	24968	71.61	81.09	27640	65.67	73.87	26652	62.6	56.69	24876	68.72	84.16
27-01-18	98.65	99.28	99.28	99.77	22701	73.43	88.71	26823	68.36	75.03	25671	68.75	82.17	25822	68.06	75.33
28-01-18	98.86	99.45	99.37	99.76	23006	69.2	99.06	26336	61.17	71.26	25286	62.34	75.67	25767	62.54	75.96
29-01-18	98.65	99.33	99.34	99.69	21319	73.7	97.51	24301	65.9	80.08	23386	65.72	82.7	22908	67.54	85.22
30-01-18	98.88	99.51	99.41	99.77	23462	69.56	90.86	27506	60.23	65.32	26371	59.91	69.51	25787	63.55	75.26
31-01-18	99.01	99.43	99.46	99.74	20058	66.91	96.68	23806	62.15	85.49	23694	61.9	79.15	22737	65.28	79.99
01-02-18	98.99	99.44	99.36	99.68	23742	68	101.28	27621	60.43	86.05	26604	60.1	83.93	26690	65.61	81.54
02-02-18	98.81	99.34	99.3	99.69	24541	72.06	103.72	27430	63.55	74.37	26866	63.93	82.04	26390	66.76	76.78
03-02-18	99.06	99.38	99.46	99.74	23521	76.42	83.67	26894	70.67	74.42	26136	67.69	74.9	25916	71.88	78.22
04-02-18	99.14	99.48	99.5	99.84	26550	72.87	92.68	30453	66.54	74.26	29845	64.29	72.68	29844	65.92	63.15
05-02-18	98.77	99.38	99.4	99.72	25142	72.28	96.72	29154	66.21	79.77	28559	65.66	75.19	29648	66.65	75.74
06-02-18	98.49	98.97	98.96	99.67	22529	89.18	111.95	25120	81.81	86.93	24921	79.18	80.34	24949	80.74	87.62
07-02-18	97.41	97.96	97.97	99.64	22446	117.6	107.76	24019	109.35	88.37	24077	106.08	94.9	23116	108.68	93.51
08-02-18	98.5	98.88	98.89	99.74	23609	94.57	99.71	25760	87.52	82.59	25672	83.71	83.63	24698	86.7	86.4
09-02-18	98.73	99.22	99.17	99.77	21785	85.62	103.76	25315	80.03	80.92	25335	77.02	80.47	25098	80.69	79.18
10-02-18	98.24	98.97	98.82	99.73	21351	90.7	103.39	24285	83.13	87.1	24134	80.22	89.7	24517	82.39	80.97
11-02-18	96.84	97.92	98.08	99.55	20748	118.29	117.68	23013	107.5	95.79	23072	102.54	88.76	22729	103.23	99.49
12-02-18	97.66	98.38	98.51	99.64	25454	104.68	96.74	28532	98.17	86.83	28403	94.3	90.64	27405	94.09	91.9
13-02-18	98.64	99.08	99.23	99.66	21993	85.21	88.76	24967	77.12	78.13	24963	74.21	69.64	23451	79.71	86.73
14-02-18	98.41	99	98.88	99.65	18192	88.84	98.92	21719	80.73	92.25	21950	79.9	99.28	21130	82.31	85.54
15-02-18	97.61	98.72	98.54	99.6	20165	98.45	108.3	23900	90.36	93.35	24211	87.41	91.29	23700	88.52	92.18
Averages	98.63	99.18	99.17	99.71	24685	79.80	96.63	28105	72.70	79.62	27348	71.09	78.29	27048	73.74	81.24

Table 12: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/1/2018 – 15/2/2018.

Figure 22: Daily average location error in the period from 16/1/2018 – 15/2/2018 (left) and the average daily compliance of all spectral bands (right).

Day	%В	%R	%N	%S	NB-B	MU-B	STD-B	NB-R	MU-R	STD-R	NB-N	MU-N	STD-N	NB-S	MU-S	STD-S
16-02-18	98.61	99.3	99.11	99.64	23586	80.02	96.65	25479	70.94	71.75	24471	70.08	81.17	25122	72.46	90.57
17-02-18	98.79	99.23	99.27	99.72	24644	76.31	86.2	26498	69.88	73.57	25924	66.21	74.44	25583	69.29	78.72
18-02-18	98.93	99.38	99.46	99.74	23197	75.2	89.42	26817	68.68	74.65	26426	65.08	70.84	26301	70.01	81.23
19-02-18	98.56	99.18	99.13	99.78	19699	79.62	95.38	23290	73.35	82.89	23258	69.98	84.39	22345	73.73	67.83
20-02-18	97.93	98.9	98.94	99.6	21457	99.65	114.22	24006	90.07	91.74	24528	86.45	86.67	22811	91.77	89.69
21-02-18	98.4	99	98.97	99.65	22349	97.88	101.44	24517	90.31	90.44	24280	85.95	86.92	24006	90.39	92.83
22-02-18	98.93	99.22	99.24	99.79	21844	89.06	93.6	24897	83.29	86.76	24515	81.69	78.55	23923	85.25	80.37
23-02-18	98.7	98.96	99.03	99.65	21390	88.75	103.72	24934	86.84	95.81	24882	84.19	89.93	24311	86.37	88.24
24-02-18	98.58	99.09	99.13	99.59	20831	87.89	98.95	24193	80.61	89.52	24601	78.33	89.62	23743	83.9	91.88
25-02-18	98.22	98.95	98.95	99.61	23857	87.92	102.02	26759	80.79	83.87	25729	79.03	88.43	25701	80.55	86.5
26-02-18	98.7	99.08	99.24	99.69	27459	83.66	92.44	31006	76.66	79.73	30861	73.57	70.85	29353	76.89	84.83
27-02-18	99.09	99.37	99.39	99.76	29037	80.82	86.46	32922	76.1	81.61	33242	73.6	75.32	32155	75.88	81.61
28-02-18	98.82	99.33	99.32	99.7	25935	77.29	102.84	29221	71.41	85.96	28932	67.64	81.64	27872	71.46	83.77
01-03-18	98.85	99.34	99.22	99.69	25969	75.77	99.72	27896	68.65	81.27	26604	68.1	86	25104	70.22	76.98
02-03-18	98.86	99.34	99.34	99.77	29140	73.11	90.43	32339	67.69	76.41	31378	64.91	77.7	30460	68.34	71.33
03-03-18	98.97	99.31	99.42	99.75	32305	69.17	86.06	35700	63.27	73.35	34737	60.72	70.14	33261	63.82	74.3
04-03-18	99.02	99.41	99.49	99.72	31038	73.24	84.44	34204	69.3	82.54	35731	66.34	72.24	33291	70.34	84.5
05-03-18	98.64	99.05	99.05	99.67	29698	80.01	96.74	32807	77.96	89.24	33530	74.22	74.71	31321	76.92	79.27
06-03-18	98.3	98.55	98.45	99.67	30947	91.47	100.79	33558	88.01	93.84	33086	84.25	86.42	30551	84.11	81.86
07-03-18	97.54	97.81	97.62	99.64	30988	104.3	99.99	34409	99.59	87.82	34731	96.01	90.87	31829	94.63	89.21
08-03-18	96.78	97.09	97.22	99.61	28138	131.56	107.63	31516	125.58	99.49	32139	117.4	92.76	30388	116.33	93.83
09-03-18	96.66	96.91	97.03	99.65	31217	124.79	107.33	33893	121.26	99.52	34737	115.47	96.63	33339	113.48	95.81
10-03-18	98.15	98.63	98.76	99.67	34751	99.41	99.51	36790	94.81	80.23	36948	91.46	84.66	35410	92.12	90.02
11-03-18	98.11	98.72	98.83	99.77	17740	92.23	108.08	19662	84.5	80.5	19858	78.23	70.11	19951	80.93	73.36
12-03-18	98.89	99	99.23	99.81	34354	79.29	80.78	37631	76.2	79.63	37514	72.11	72.14	35494	73.62	80.75
13-03-18	99.2	99.41	99.45	99.71	35296	68.45	82.69	38828	64.1	80.33	39154	60.74	71.11	37270	65.99	84.54
14-03-18	98.93	99.33	99.29	99.72	32579	68.45	87.23	35925	64.55	79.79	36734	62.72	78.48	34420	65.41	78.76
15-03-18	98.68	99.25	99.21	99.71	35389	77.16	93.16	37724	70.36	77.67	37418	67.78	78.9	34125	71.2	75.58
Averages	98.49	98.92	98.95	99.70	27016	86.49	96.10	29989	80.90	84.16	29946	77.57	80.84	28715	80.16	83.43

Table 13: Daily achieved compliance and the daily average location error (in m) for all spectral bands in the period 16/2/2018 – 15/3/2018.

PROBA-V_D9_QIR-017_2018-Q1_v1.0Quarterly Image Quality ReportPage 46 of 51

Figure 23: Daily average location error (left) for all spectral bands in the period from 16/2/2018 – 15/3/2018 and the average daily compliance (right).

2.3.2. Inter-band geometric accuracy

The monthly average inter-band geolocation error for all spectral band combinations was as follows:

Band pair	Inter-band error [m]
BLUE-RED	35.63, σ = 9.45
BLUE-NIR	53.69, σ = 22.05
BLUE-SWIR	56.81, σ = 17.97
RED-NIR	33.93, σ = 16.44
RED-SWIR	45.38, σ = 11.37
NIR-SWIR	44.11, σ = 8.55

Table 14: Inter-band geolocation accuracy for period 16/12/2017 to 15/1/2018 for the combined cameras, at 95% confidence level.

Band pair	Inter-band error [m]
BLUE-RED	36.73, σ = 10.41
BLUE-NIR	52.11, σ = 16.98
BLUE-SWIR	57.26, σ = 15.48
RED-NIR	33.47, σ = 15.08
RED-SWIR	46.04, σ = 10.01
NIR-SWIR	46.02, σ = 8.69

Table 15: Inter-band geolocation accuracy for period 16/1/2018 to 15/2/2018 for the combined cameras, at 95% confidence level.

Band pair	Inter-band error [m]
BLUE-RED	37.62, σ = 10.28
BLUE-NIR	54.14, σ = 17.54
BLUE-SWIR	57.59, σ = 14.32
RED-NIR	34.78, σ = 15.71
RED-SWIR	46.48, σ = 10.89
NIR-SWIR	45.50, σ = 8.92

Table 16: Inter-band geolocation accuracy for period 16/2/2018 to 15/3/2018 for the combined cameras, at 95% confidence level.

For the combined cameras, the inter-band geometric accuracy ranged from 34 - 58 m (standard deviation range is 9 - 22 m), which is 0.10 - 0.17 of a pixel (333 m). This result is comparable to the previous reporting period. The average inter-band RED-NIR registration accuracy was 34 m, which is slightly higher (+1 m) than in previous reporting period.

2.3.3. Multi-temporal geometric accuracy

During this reporting period the multi-temporal compliance of the geometric accuracy was:

• 78.83% for the VNIR sensor (132,881 GCPs used),

• 94.07% for the VNIR/SWIR combined (146,373 GCPs used).

The multi-temporal sensor compliance has decreased by 6.85% and 1.46% for the VNIR and combined VNIR/SWIR, respectively, compared to the previous reporting period (in which values were 85.68% and 95.53%, respectively).

For the VNIR the multi-temporal geometric accuracy is below the requirements. A map of regions with decreased multi-temporal geometric accuracy is presented in Figure 24.

Multitemp VNIR flag (0:novalue, 1:MultiTempNOK, 2:MultiTempOK)

Figure 24: Multi-temporal geometric accuracy for the VNIR sensor. Compliant areas are marked in green; areas with accuracy below 95% are marked in red. Grey areas represent no data.

For the combined VNIR/SWIR the multi-temporal geometric accuracy is compliant with the requirements. A map of regions with decreased multi-temporal geometric accuracy is presented in Figure 25.

Figure 25: Multi-temporal geometric accuracy for the VNIR/SWIR combined. Compliant areas are marked in green; areas with accuracy below 95% are marked in red. Grey areas represent no data.

Over the last full year, the multi-temporal accuracy for VNIR and VNIR/SWIR is XX.XX% and Yy.YY%, respectively.

2.4. Geometric ICP file

On 08.09.2016 a new file with validity date set to 01.09.2016 was created.

ICP filename	Description
PROBAV_ICP_GEOMETRIC#LEFT_20160901_V01	Correction for the gradual
PROBAV_ICP_GEOMETRIC#CENTER_20160901_V01	degradation observed in the last
PROBAV ICP GEOMETRIC#RIGHT 20160901 V01	week of August and first week of
	September 2016.

3. Reference documents

RD-1	PROBA-V Commissioning Report Annex 1-Radiometric Calibration Results [N77D7-PV02-US-20-CRPT-Annex1-RadiometricCalibartion-v1_3]
RD-2	PROBA-V Commissioning Report Annex 2-Geometric Calibration Results [N77D7-PV02-US-20-CRPT-Annex2-GeometricCalibartion-v1_3]
LIT1	Govaerts Y., Sterckx S. and Adriaensen S. (2013) "Use of simulated reflectances over bright desert target as an absolute calibration reference" Remote Sensing Letters, Vol. 4, Iss. 6, 2013.
LIT2	S. Adriaensen, K. Barker, L. Bourg, M. Bouvet, B. Fougnie, Y. Govaerts, P. Henry, C. Kent, D. Smith, S. Sterckx. "CEOS IVOS Working Group 4: Intercomparison of vicarious calibration methodologies and radiometric comparison methodologies over pseudo-invariant calibration sites A Report to the CEOS/IVOS Working Group", 2012
LIT3	Sterckx S., Adriaensen S., Livens, L., "Rayleigh, Deep Convective Clouds and Cross Sensor Desert vicarious calibration validation for the PROBA-V mission." IEEE Transactions on Geoscience and Remote Sensing. Inter-Calibration of Satellite Instruments Special Issue. Vol.51:3, 1437 – 1452.

Table 18: Reference Documents