

page 1 of 65

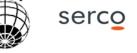
document title/ titre du document

SCIAMACHY BI-MONTHLY REPORT: MARCH - APRIL 2006

Angelika Dehn prepared by/préparé par

ENVI-SPPA-EOPG-TN-06-0024 reference/réference

issue/édition 1 0 revision/révision


22 June 2006 date of issue/date d'édition

status/état

Technical Note Document type/type de document Distribution/distribution

page 2 of 65

APPROVAL

Title	SCIAMACHY Bi-Monthly Report: March - April 2006	issue 1	revision	0
titre		issue	revision	

author	A. Dehn, SERCO, Manfred Gottwald, SOST-DLR, Stefan Noël,	date 16/06/2005
auteur	SOST-IFE	date

approved by	S. Slijkhuis, DLR (DPQC)	date 22/06/2006
approuvé by	T. Fehr ESA/ESRIN, D/EOP-GOQ	date

CHANGE LOG

reason for change /raison du changement	issue/issue	revision/revision	date/date

CHANGE RECORD

Issue: 1 Revision: 0

reason for change/raison du changement	page(s)/page(s)	paragraph(s)/paragraph(s)

page 3 of 65

1	INTRODUCTION	5
	1.1 Scope	5
	1.2 References	5
	1.3 Acronyms and Abbreviations	6
2	SUMMARY	8
3	INSTRUMENT CONFIGURATION AND PERFORMANCE	10
Ü	3.1 In-Flight Status and Performance	
	3.1.1 Planned Operations and Measurements (SOST-DLR)	
	3.1.2 Instrument Measurement Status (SOST-DLR)	
	3.1.3 Executed Operations and Measurements (SOST-DLR)	
	3.1.4 Performance Monitoring - System (SOST-DLR)	
	3.1.5 Performance Monitoring - Light Path (SOST-IFE)	
	3.1.5.1 Science Channel Averages	
	3.1.5.2 Spectral light path monitoring results	
	3.1.5.3 PMD monitoring results	
	3.1.6 Problem Report Status (DLR-BO)	
	DATA AVAILABILITY OTATIOTIOS	0.4
4	DATA AVAILABILITY STATISTICS	
	4.1 Downlink/Acquisition Performance	34
	4.2 Statistics on unconsolidated data (SCI_NL0P, SCI_NL1P)	
	4.3.1 Anomalies on L0 consolidated data products	
	4.4 Statistics on reprocessed data	30
5	LEVEL 1 PRODUCT QUALITY MONITORING	37
	5.1 Processor Configuration	
	5.1.1 Version	
	5.1.2 Auxiliary Data Files	38
	5.1.3 Spectral Performance	39
	5.1.4 Radiometric Performance	
	5.1.5 Other Calibration Results	40
	5.1.5.1 SMR analysis	40
	5.1.5.2 LK1 analysis	45
	5.1.5.3 PE1 analysis	48
	5.1.6 Pointing Performance	48

page 4 of 65

6	LEVEL 2 NRT PRODUCT QUALITY MONITORING	49
-	6.1 Processor Configuration	
	6.1.1 Version	49
	6.1.2 Auxiliary Data Files	
	6.2 O ₃ consistency checking	
	6.3 NO ₂ consistency checking	
	6.3.1 NO ₂ VCD map March 2006	
	6.3.1.1 NO ₂ VCD anomalous values during 30-31 March 2006	
	6.3.2 NO ₂ VCD map April 2006	
7	7.1 Processor Configuration	
	7.1.1 Version	53
	7.1.2 Auxiliary Data Files	
	7.1.3 Monitoring results	
8	VALIDATION ACTIVITIES AND RESULTS	54
	8.1 SCIAMACHY-ECMWF Comparisons using SCI_RV2P	54
	8.1.1 Summary of the ECMWF SCIAMACHY monthly report for March 2006	54
	8.1.2 Summary of the ECMWF SCIAMACHY monthly report for April 2006	55
	8.2 Statistics from Inter comparison with External Data	56

page 5 of 65

SCIAMACHY BI-MONTHLY Report March - April 2006

1 INTRODUCTION

The SCIAMACHY Bi-Monthly report documents the current status and recent changes to the SCIAMACHY instrument, its data processing chain, and its data products.

The Bi-Monthly Report (hereafter BMR) is composed of analysis results obtained by the Product Control Facility, combined with inputs received from the different groups working on SCIAMACHY operation, calibration, product validation and data quality.

The first part of the report is dedicated to Instrument Configuration and Performance. It is composed of contributions from SOST-DLR and SOST-IFE.

The remainder of the report is dedicated to Level 1 and Level 2 performance assessment and is generated by ESA/ESRIN DPQC with contributions from ESA/ESTEC PLSO and DLR-IMF.

The structure of the report will be in constant evolution through the ENVISAT mission, as experience with SCIAMACHY data and quality control grows.

1.1 Scope

The main objective of the BMR is to give, on a regular basis, the status of SCIAMACHY instrument performance, data acquisition, results of anomaly investigations, calibration activities and validation campaigns. The BMR is composed of the following six sections:

- Summary;
- Instrument Configuration and Performance;
- Data Availability Statistics;
- Level 1 Product Quality Monitoring;
- Level 2 Product Quality Monitoring;
- Validation Activities and Results.

1.2 References

- [1] 'Instrument Operation Manual', MA-SCIA-0000DO/01, Issue F R2, 16 Dec. 2004
- [2] 'ENVISAT-1 Products Specifications Volume 15: SCIAMACHY Products Specifications', PO-RS-MDA-GS-2009, Issue 3, Rev: J, Alberto Pellegrini
- [3] 'SCIAMACHY cL0 Statistics, PO-TN-DLR-SH-0012, Issue 1, Rev. 1 14 April 2005'
- [4] SCIAMACHY cL0 Statistics 2003, PO-TN-DLR-SH-0013, Issue 1, Rev. 0 14 April 2005

DAC

page 6 of 65

1.3 Acronyms and Abbreviations

ADC Analogue to Digital Converter

Auxiliary Data File **ADF**

Ascending Node Crossing ANX

Attitude and Orbit Control System AOCS

Aperture Stop Mechanism APSM Azimuth Scan Mechanism ASM **Active Thermal Control ATC Bi-Monthly Report BMR** CA Corrective Action Communication Area CCA CTI Configurable Transfer Item Digital Analogue Converter

DLR-IMF Deutsches Zentrum fuer Luft- und Raumfahrt

DPQC Data Processing Quality Control ESM Elevation Scan Mechanism

FPN Fixed Pattern Noise HK Housekeeping

Instrument Control Electronics ICE ICU Instrument Control Unit

Instrument Engineering and Calibration Facilities **IECF**

Instrument Operation Manual IOM

LK1 Leakage Current Auxiliary File (SCI_LK1_AX)

LOS Line of Sight Macro Command **MCMD** Monthly Report MR

Nadir Calibration Window Mechanism **NCWM** NDFM Neutral Density Filter Mechanism Non-nominal Decontamination NNDEC

NRT Near Real Time

Optical Bench Module OBM **OCR Operations Change Request** Orbit Sequence Definition File **OSDF**

PCF **Product Control Facility**

PDHS Payload Data Handling Station (PDS) Payload Data Handling Station - ESRIN PDHS-E Payload Data Handling Station - Kiruna PDHS-K

Payload Data Segment PDS

PE1 Pixel to Pixel/ Etalon Auxiliary File (SCI_PE1_AX)

Pavload Switch OFF **PLSO**

PMD Polarization Measurement Device

Quality Analysis of Data from Atmospheric Sounders **OUADAS**

SAA South Atlantic Anomaly

Scanning Imaging Absorption Spectrometer for Atmospheric SCIAMACHY

Chartography

page 7 of 65

SEU Single Event Upset
SLS Spectral Line Source
SMR Sun Mean Reference

SOST SCIAMACHY Operations Support Team

SP1 Spectral Calibration Auxiliary File (SCI_SP1_AX)
SU1 Sun Reference Auxiliary File (SCI_SU1_AX)

SZA Sun Zenith Angle TC Thermal Control

TCFoV Total Clear Field of View

TOA Top of Atmosphere

TRUE Tangent height Retrieval by UV-B Exploitation

VCD Vertical Column Density
WLS White Light Source

page 8 of 65

2 SUMMARY

 During the reported period SCIAMACHY measurements were nominal with respect to planning, except for three anomalies and one out-of-plane orbit manoeuvre (OCM). The unavailabilities occurred during following orbits:

21298-21306 (28-Mar-2006)	OCM
21428-21479 (06-09 -Apr-2006)	ENVISAT anomaly
21534-21547 (13-14 -Apr-2006)	instrument anomaly
21584-21634 (16-20-Apr-2006)	instrument anomaly

- Monthly Calibration was executed during Orbits:
 - > 21080-21084 (12-Mar-2006)
 - > 21510-21514 (11-Apr-2006)
- Occultations with the moon rising on the night side were executed between orbits:
 - > 21003-21106 (07-14-Mar-2006)
 - > 21425-21529 (05-13-Apr-2006)
- One OCR has been implemented:
 - > OCR_24 (19-Mar-2006 15-Apr-2006)
- One TC adjustment was required in order to increase the temperatures for detectors 4 & 5 during orbit:
 - > 21245 (24-Mar-2006)
- Light Path monitoring:
 - ➤ Channel 1&2: degradation in UV for all light paths involving ESM increases with a rate of 0.5-1 % per month. The average throughput loss in channel 1 is about 20%.
 - ➤ Channels 3 small throughput loss (about 2%)
 - > Channel 4 throughput shows now a small loss
 - > Channel 5 throughput remains stable
 - ➤ Channel 6 throughput is slightly varying in different ways for different light paths (less than 2%)
 - > Channel 7 throughput rather stable over time interval
 - > Channel 8 throughput remains stable at about 75-80%

PMD monitoring:

- > UV degradation visible in science channels is also visible in PMD 1 to 3
- > PMD 4 and 7 show a large decrease in throughput which is currently unexplained.
- > PMD 6 results still under investigation

3 INSTRUMENT CONFIGURATION AND PERFORMANCE

3.1 In-Flight Status and Performance

Detailed operations, planning and instrument status information can be found on the website of the *SCIAMACHY Operations Support* (*SOST*) under http://atmos.caf.dlr.de/projects/scops/. These pages are maintained on a daily basis and show the history and actual progress of the SCIAMACHY mission.

serco

3.1.1 Planned Operations and Measurements (SOST-DLR)

The reporting period covers the orbits 20913 (ANX = 01-Mar-2006, 01:29:18.453) to 21785 (ANX = 30-Apr-2006, 23:31:27.795). One OSDF specified the planning baseline.

Orbit		ANX		OSDF	
Start	Stop	Start	Stop	OSDF	
20913	21785	01-Mar-2006	30-Apr-2006	MPL OSD SHVSH 20060119 010101 00000000 33150001 20060301 012920 20060501 011	
20913	21765	01:29:18.453	23:31:27.795	WILE_000_011V 011_20000113_010101_00000000_33100001_20000301_012320_20000301_011201	

Table 3-1: SCIAMACHY OSDF planning file from March – April 2006

All measurements were nominal, i.e. timelines executed on the dayside of the orbit limb/nadir sequences with wide swath settings. In-flight calibration and monitoring measurements occurred on daily, weekly and monthly timescales according to the mission scenarios. Monthly calibration was scheduled between orbits

- 21080-21084 (12-Mar-2006)
- 21510-21514 (11-Apr-2006)

The moon was in the limb TCFoV between orbits

- 21003-21124 (07-Mar-2006 until 15-Mar-2006)
- 21425-21563 (05-Apr-2006 until 15-Apr-2006)

Occultations with the moon rising on the nightside were executed between orbits

- 21003-21106 (07-Mar-2006 until 14-Mar-2006)
- 21425-21529 (05-Apr-2006 until 13-Apr-2006)

OCR_24 has been implemented between March 19th and April 15th.

3.1.2 Instrument Measurement Status (SOST-DLR)

Final flight status for mission scenarios, states and timelines remained unchanged throughout the reporting period.

3.1.3 Executed Operations and Measurements (SOST-DLR)

Measurements

The OSDF planning file has been scheduled as requested except for three anomalies (see below) and one Orbit Control Manoeuvre (OCM, see below).

Detector thermal adjustment

One TC adjustment was required in order to increase temperatures for detectors 4 & 5. This occurred in orbit 21245 (24-Mar-2006, 07:31:16 UTC). The TC settings were (before/after adjustment)

- DAC1 = 0.53/0.53 W
- DAC2 = 0.70/0.70 W
- DAC3 = 0.03/0.00 W

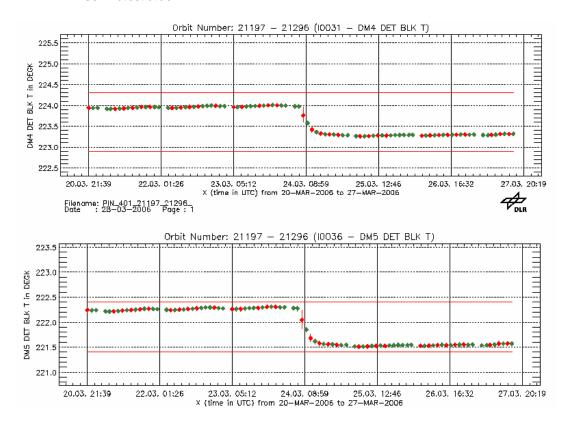


Fig. 3-1: Response of detectors 4 & 5 to TC adjustment

page 12 of 65

In the reporting period 1 APSM/NDFM health check and 2 PMD ADC calibrations were executed. All showed nominal results.

	APSM/NDFM	РМІ	O ADC	
Orbit	ANX	Result	Orbit	ANX
21331	30-MAR-2006 07:46:01	ok	21332	30-MAR-2006 09:22:30
n.a.	n.a.	n.a.	21718	26-APR-2006 08:30:25

Table 3-2: APSM/NDFM health check and PMD ADC calibration

Anomalies

Three anomalies had occurred.

- In orbit 21428 (06-Apr-2006, 02:09:26 UTC) a platform anomaly (service module depointing signal line SM DSL) switched off all instruments. Likely cause for this error was a Single Event Upset (SEU). In orbit 21479 (09-Apr-2006, 14:42:34 UTC) the MPS schedule was resumed.
- In orbit 21534 (13-Apr-2006, 10:51:38 UTC) a SEU triggered a transfer to HTR/RF. Recovery ended in orbit 21547 (14-Apr-2006, 09:51:45 UTC) when the MPS scheduled was resumed.
- In orbit 21584 (16-Apr-2006, 23:08:44 UTC) another SEU triggered a transfer to HTR/RF. Recovery ended in orbit 21634 (20-Apr-2006, 10:47:20 UTC) when the MPS scheduled was resumed.

Orbit	Date	Entry - UTC	Level	Entry Type	ID Content/Transition	Mode	Remark
21428	06-APR-2006	2006.096.02.09.26.446	ENVISAT	SWITCHING	SM DSL	OFF-SAFE	ENVISAT payload switch-off
	13-APR-2006	2006.103.10.51.38.011	Instrument	AUTONOMOUS SWITCHING	ID406 / goto HTR/RF	HTR/RF	SDPU-Tx_Buffer_Overflow (suspected SEU)
21534	13-APR-2006	2006.103.10.55.11.500	Instrument	MACROCOMMAND EXECUTION ENTRY	START TIMELINE	HTR/RF	Complementary Failure
21534	13-APR-2006	2006.103.10.55.11.508	Instrument	COMPLEMENTARY FAILURES		HTR/RF	Complementary Failure
21584	16-APR-2006	2006.106.23.08.44.996	Instrument	AUTONOMOUS SWITCHING	ID406 / goto HTR/RF	HTR/RF	SDPU-Tx_Buffer_Overflow (suspected SEU)
21584	16-APR-2006	2006.106.23.53.36.675	Instrument	MACROCOMMAND EXECUTION ENTRY	START TIMELINE	HTR/RF	Complementary Failure
21584	16-APR-2006	2006.106.23.53.36.687	Instrument	MACROCOMMAND EXECUTION ENTRY	START TIMELINE	HTR/RF	Complementary Failure
21584	16-APR-2006	2006.106.23.53.36.687	Instrument	COMPLEMENTARY FAILURES		HTR/RF	Complementary Failure
				continuous Complementary Failures until	2006.107.03.46.36.499 (13 entri	es)	
21587	16-APR-2006	2006.107.03.46.36.483	Instrument	MACROCOMMAND EXECUTION ENTRY	START TIMELINE	HTR/RF	Complementary Failure
21587	16-APR-2006	2006.107.03.46.36.495	Instrument	COMPLEMENTARY FAILURES		HTR/RF	Complementary Failure
21587	16-APR-2006	2006.107.03.46.36.499	Instrument	MACROCOMMAND EXECUTION ENTRY	START TIMELINE	HTR/RF	Complementary Failure

Table 3-3: Instrument anomalies between March and April 2006

Orbit Control Manouevre

Between orbits 21298 (28-Mar-2006, 00:25:34 UTC) and 21306 (28-Mar-2006, 13:49:34 UTC) SCIAMACHY was in MEASUREMENT IDLE mode during an out-of-plane OCM.

This OCM was executed such that the first z-slew started and ended inside eclipse and the second slew occurred partially outside eclipse (4 min). No thermal impact of direct solar irradiance was observed.

Instrument unavailability

The instrument was unavailable during an OCM, one platform and two instrument anomalies.

serco

	Unavailability								
Orbit		итс		Event Remark					
Start	Stop	Start	Stop						
21298	21306	28-Mar-2006 00:25:34	28-Mar-2006 13:49:34	transfer to MEASUREMENT/IDLE	ОСМ				
21428	21479	06-Apr-2006 02:09:26	09-Apr-2006 14:42:34	transfer to OFF-SAFE	ENVISAT SM DSL				
21534	21547	13-Apr-2006 10:51:38	14-Apr-2006 09:51:45	transfer to HTR/RF	SDPU_Tx buffer overflow (SEU)				
21584	21634	16-Apr-2006 23:08:44	20-Apr-2006 10:47:20	transfer to HTR/RF	SDPU_Tx buffer overflow (SEU)				

Table 3-4: Instrument unavailabilities between March and April

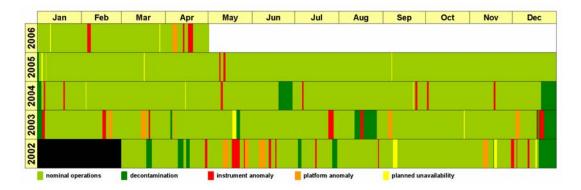


Fig. 3-2: Current instrument availability status including the reporting period

3.1.4 Performance Monitoring - System (SOST-DLR)

Detector temperatures

Detector temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits. For each detector the average temperatures per orbit are determined from HK telemetry parameters. Fig. 3-3 displays the temperatures of all 8 detectors. Colour coding is as on the operational monitoring website, i.e. data from orbits with HK telemetry coverage > 90% are shown in red, for < 90% in green. Minimum/maximum values per orbit are indicated as vertical bars. The temperature limits of each detector are shown as horizontal lines.

Temperature violations (cooling below the lower limits) occurred only as a result of the platform/instrument anomalies (see above). One TC adjustment was required (see above).

page 14 of 65

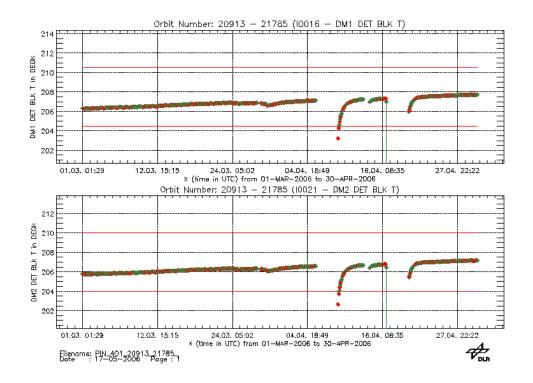
OBM temperatures

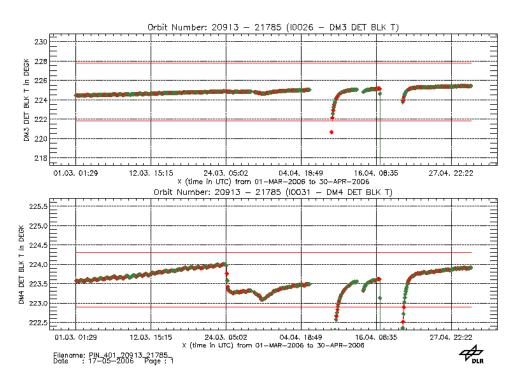
OBM temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits. The average OBM temperature per orbit is determined from specific HK telemetry parameters. In addition power readings for the ATC heaters are monitored. Temperatures and ATC heater powers are given in Fig. 3-4 and 3-5. Colour coding is as in Fig. 3-3.

OBM temperatures and ATC heater powers remained within limits except for the time when the platform/instrument anomalies occurred (see above).

PMD ADC status

The status of the PMD ADC is monitored according to the requirements of the IOM [1]. It requests to ensure that no glitches occur caused by an SEU.


No PMD ADC glitches have been detected.



serco

page 15 of 65

page 16 of 65

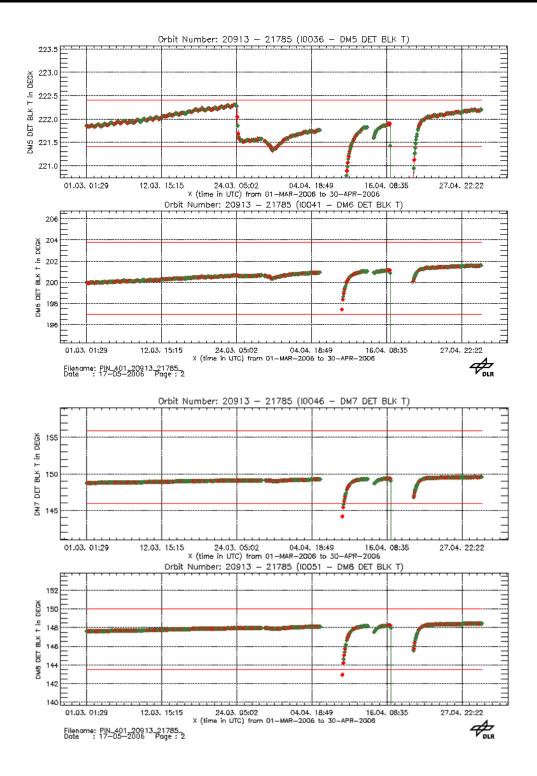


Fig. 3-3: Detector temperatures

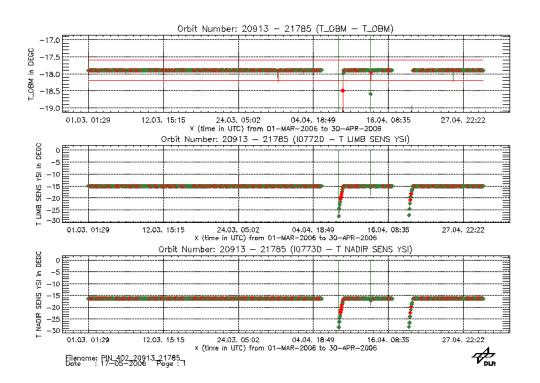


Fig. 3-4: OBM temperatures (top: derived OBM, middle: limb sensor, bottom: nadir sensor)

page 18 of 65

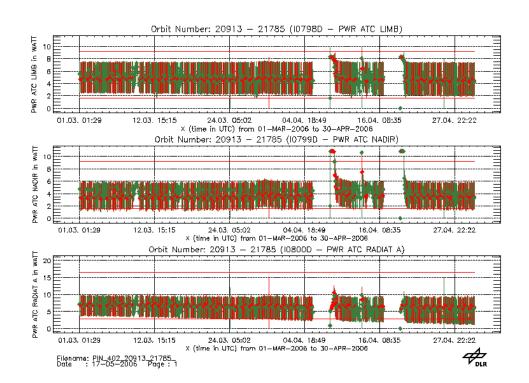


Fig. 3-5: ATC heater power (top: ATC limb, middle: ATC nadir, bottom: ATC Rad A)

LLI status

Life Limited Items are monitored based on analysis of the

- OSDF: This yields a predicted LLI usage.
- Report format: This counts the actual LLI switches or used LLI cycles. No WLS/SLS burning times can be derived thereof.

In addition, the in-flight usage of the cryogenic heat pipe is recorded. This subsystem has a limited number of cycles. Each decontamination increases the accumulated number of cycles by 1.

At the end of the reporting period the fractional usage of the LLI relative to the allowed in-flight budget was

NDFM: 0.57 APSM: 0.52

• NCWM (sub-solar port): 0.61

• WLS (switches): 0.11

• WLS (burning time): 0.22

SLS (switches): 0.04

SLS (burning time): 0.01

How the relative LLI usage has accumulated since launch can be seen in fig. 3-6. 'EOL' assumes a total mission lifetime of 0.5 years of Commissioning Phase and 4.5 years of routine operations (note that discussions are ongoing to adapt the LLI usage to the agreed mission extension).

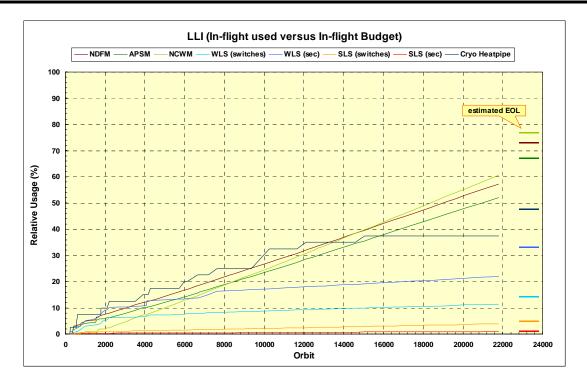
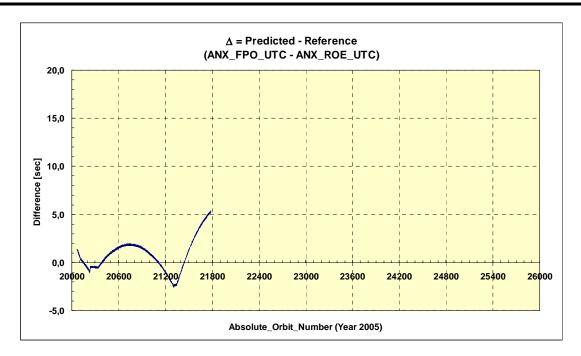


Fig. 3-6: Realtive usage of LLIs. 'EOL' is derived for the currently specified mission lifetime.

The number of cryogenic heatpipe cycles did not increase (no decontamination). The budget used remained at 38% of the allowed in-flight budget.

Time reference


The times quoted in all planning files refer to the reference orbit. Since the actual orbit differs from the reference orbit (e.g. orbit drift), the times given w.r.t. the reference orbit also do not reflect exactly the actual absolute times of events along the orbit (e.g. ANX, sunrise, sub-solar, moonrise, eclipse). The requirements for orbit maintenance may result in time differences of usually $< \pm 10$ sec. In some cases this value may even reach ± 1 min, however.

SOST monitors how the reference time deviates from the actual time. This is done by using the predicted time which comes very close to the actual = restituted time. If the predicted times are delayed w.r.t. the reference orbit, then the difference predicted reference time is > 0 sec; in the other case it is < 0 sec.

Fig. 3-7 displays the time difference predicted - reference. Orbit manouevres cause distinct discontinuities.

page 21 of 65

serco

Fig. 3-7: Time difference between predicted and reference time.

3.1.5 Performance Monitoring - Light Path (SOST-IFE)

3.1.5.1 Science Channel Averages

One part of the SOST long-term monitoring activities is the trend analysis of measurements with the internal White Light Source (WLS) and of observations of the unobscured Sun above the atmosphere. In order to monitor the different SCIAMACHY light paths solar measurements are taken in various viewing geometries: In limb/occultation geometry (via ASM and ESM mirrors), in nadir geometry (via the ESM mirror through the subsolar port), and via the so-called calibration light path involving the ASM mirror and the ESM diffuser.

SCIAMACHY long-term monitoring comprises a regular analysis of these measurements.

The plots displayed in Fig. 3.8 show results of these monitoring activities for the time interval March to April 2006.

All measured signals have been averaged over the entire channel and then divided by the corresponding measurement at a reference time (currently 2 August 2002, at about orbit 2200), yielding an effective instrument throughput for the different light paths.

The timing of subsolar measurements before 30 November 2002 (about orbit 3922) did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. Therefore all subsolar measurements after 30 November 2002 have been referred to orbit 4519 (10 March 2003, just after a long decontamination phase).

page 22 of 65

DID

Note that measurements performed during times of reduced instrument performance (e.g. switch-offs or decontamination periods) have been omitted.

The results presented in Fig. 3.8 are based on the analysis of Level 0 data, which have been corrected for dead/bad pixels, dark current (fixed value from August 2002), scan angle dependencies, quantum efficiency changes, and the seasonally varying distance to the Sun. Additional calibration steps have not been performed, like for example a straylight correction. Therefore, variations smaller than about 1% require careful interpretation.

Furthermore, there exists a systematic offset between the throughput results for the subsolar light path and those for the other viewing geometries. This offset is most prominent in the IR and most likely caused by the specific subsolar scan mode (fast sweep) analysed.

The light path monitoring results presented in this section may be regarded as a first step towards spectrally resolved monitoring factors (m-factors) which will be produced based on Level 1b data.

Daily updated light path monitoring results can be found on the SOST or IUP web site (http://www.iup.physik.uni-bremen.de/sciamachy/LTM/LTM.html).

page 23 of 65

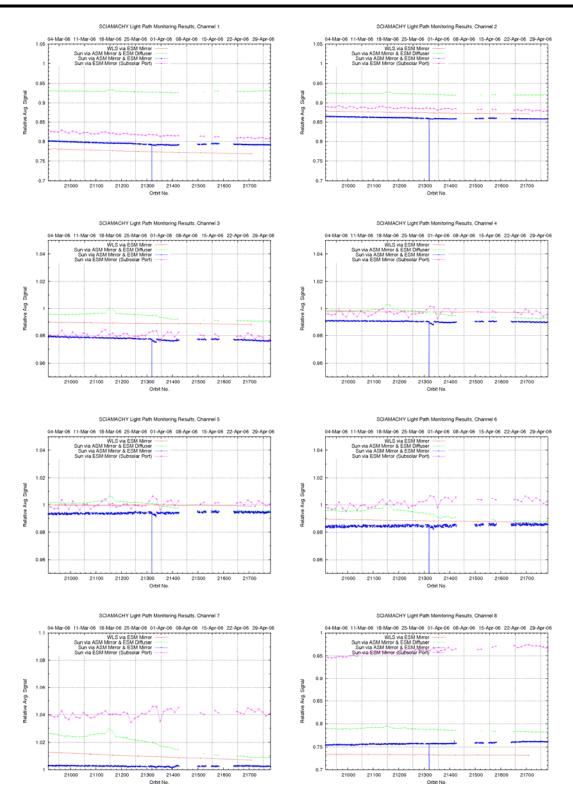


Fig. 3.8: Light path monitoring results March to April 2006.

The following specific features can be identified from the light path monitoring results during the time interval of this report:

- The gaps in the data result from three instrument switch-downs which occurred during the time period of this report
- The short signal drop end of March in the limb/occultation light path data is caused by a solar eclipse occurring at that time.
- For all light paths involving the ESM mirror the degradation in the UV (channels 1 & 2) increases with a rate of about 0.5-1% per month, slightly smaller than observed during the previous time interval. The average throughput loss in channel 1 is still about 20%. The calibration light path which involves the ESM diffuser instead of the ESM mirror remains rather stable over the two months covered by this report. However, uncorrected seasonal effects which overlay a small degradation may not be excluded here.
- The overall degradation of channel 3 is very small (about 2%) compared to channels 1 and 2, but is still slowly increasing.
- There is now also a small throughput loss in channel 4 visible, but channel 5 remain stable.
- The throughput in channel 6 is slightly varying in a different way for different light paths. Especially for the calibration light path the overlaid seasonal component mentioned already in previous reports plays a role here.
- The throughput of channel 7 is still rather stable. Variations in the calibration light path throughput are probably due to seasonal effects (similar as for channel 6) which had been masked by the influence of icing during previous years. The WLS light path throughput seems to decrease slightly whereas the limb light path throughput remains rather stable. This may also be caused by a seasonal effect and should be observed further.
- Channel 8 transmission still remains quite stable at about 75-80% (depending on light path; note that the subsolar results are not reliable here because of the scan mode analysed).

3.1.5.2 Spectral light path monitoring results

Fig. 3.9-3.12 show results of spectral throughput monitoring performed by SOST-IFE for the different light paths (nadir, limb, calibration, and WLS). These results have been derived from Level 0 data analysed in a similar way as for the channel averaged throughput data (but of course without spectral averaging).

Because the variation in spectral direction is very small within two month, Fig. 3.9 - 3.12 show the complete time series from 2 August 2002 to the end of April 2006.

Notes:

- Dates in the graphs refer to UTC noon (12:00).
- The data have been interpolated over dead/bad pixels (using the on-ground list).
- Data from times of reduced instrument performance (like decontaminations or instrument switch-offs) have not been considered. These times are masked out by grey vertical bars.

page 25 of 65

- All data have been transformed to a daily grid, involving averaging and interpolation.
- Ratios have been performed on a pixel axis without any spectral interpolations. The wavelength axis is just for illustration and gives only approximate values, assuming a linear relation between pixel number and wavelength.
- Depending on the availability of measurement data, features close to large data gaps (especially before and after a decontamination) may be caused by interpolation.
- WLS data have not been corrected for a potential degradation of the lamp. Only the intensity jump after the extended WLS usage in June 2003 has been removed.
- As mentioned before, the timing of subsolar measurements before 30 November 2002 did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. The timing has been corrected in the final flight settings. To take this change into account, all subsolar measurements have been referred to orbit 4519 (10 January 2003).

Therefore, subsolar results before 30 November 2002 are not reliable.

page 26 of 65

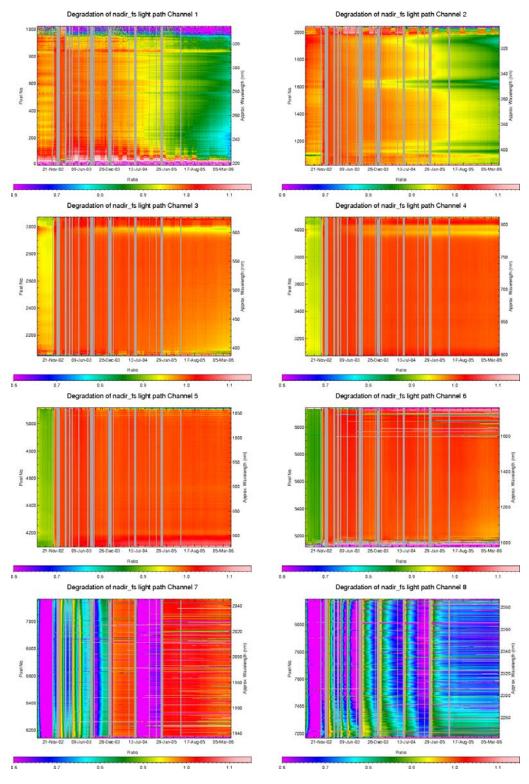


Fig. 3.9: Spectral light path monitoring results August 2002 to April 2006 (nadir light path)

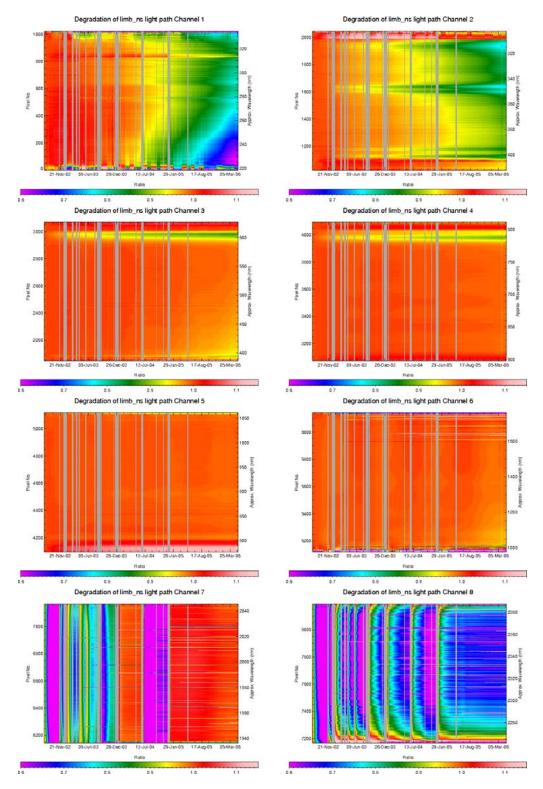


Fig. 3.10: Spectral light path monitoring results August 2002 to April 2006 (limb light path)

page 28 of 65

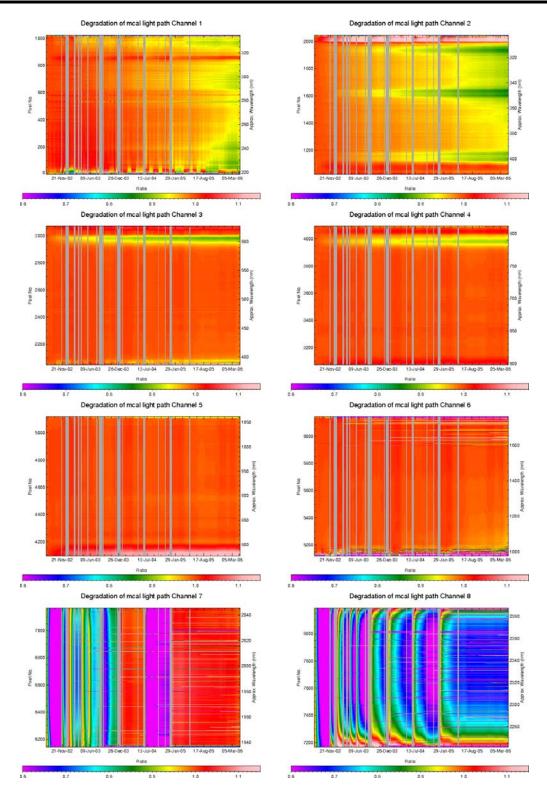


Fig. 3.11: Spectral light path monitoring results August 2002 to April 2006 (calibration light path)

page 29 of 65

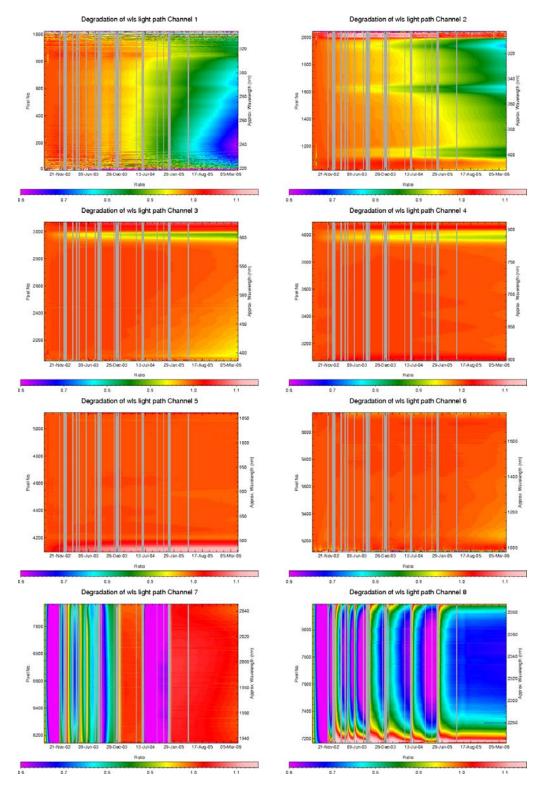


Fig. 3.12: Spectral light path monitoring results August 2002 to April 2006 (WLS light path)

page 30 of 65

The following main features can be identified in the spectral monitoring plots:

- As expected, the UV degradation generally decreases with increasing wavelength.
- The SCIAMACHY degradation strongly depends on wavelength and is largest at the channel edges and at spectral regions of high polarisation sensitivity (especially visible in channel 2, e.g. the peak around 350 nm).
- The minimum throughput reaches about 60% for the limb and WLS (nadir) light paths at the short wavelength edge of channel 1.
- Also solar activity variation can be seen in the plots, e.g. the intensity change of the solar Mg II Fraunhofer line at about 280 nm.
- The degradation in channel 3 which was already indicated by the channel integrated results is much better visible in the spectrally resolved plots, where the propagation of this effect in time to higher wavelengths can be clearly identified.
- The difference in degradation between the diffuser light path and the other light paths is also visible in the plots; however, the spectral regions where degradation is strongest coincide quite well.
- The spectral plots also show that the stability for channels 4 and 5 observed in the integrated data is not present over the whole spectral range; also these channels show variations, but these are restricted to the overlap regions close to the channel edges. However, the spectral results indicate the slow throughput loss observed in the channel 4 integrated results is mainly restricted to a small region at the upper wavelength edge.
- Channel 6 spectral results confirm the assumption of a slight degradation in this channel which is concentrated at the lower wavelength edge and independent of the overlaid remaining seasonal cycle.
- For channels 7 and 8 the spectral behaviour of the throughput loss is consistent with (broadband) ice absorption features. The effect of the decontaminations is of course also clearly visible in these channels.
- Especially channel 8 shows a large pixel dependence of the throughput variation caused by the different sensitivity of the pixels. This variation is much higher for light paths where the small aperture is involved (i.e. nadir (subsolar) and limb), indicating that the small aperture causes additional effects which need to be considered when applying these results to Earthshine data.
- In general, the WLS data are much smoother than the solar data.

3.1.5.3 PMD monitoring results

The SCIAMACHY PMDs are monitored in a similar way as the science channels, but of course no channel averaging is performed. However, the results presented here are based on the same measurements as the science channel results (but using the PMD low gain signal), and they have been normalized to the same reference times.

For the nadir light path it is not possible to use subsolar fast sweep measurements for PMD monitoring, because these show a too large scatter. This is probably caused by a combination of the very time-sensitive measurement type and scan mode and the fact that the PMDs measure a sampled signal, not an integrated one. Therefore, subsolar pointing measurements are used for monitoring of the PMD nadir light path, because the pointing

page 31 of 65

signal is much more stable. Unfortunately, subsolar pointing measurements are only performed once per month, therefore the temporal sampling is much less than for the other light paths.

This reduced temporal sampling is also the reason that Fig. 3.13 shows the PMD throughput variation for the whole time period between 2 August 2002 and 30 April 2006 (instead of only the two month time interval of this report). Note that a constant dark signal for each of the PMDs has been assumed. To verify this assumption, Fig. 3.12 also shows the variation of the PMD dark signal over time, which is usually quite low.

Note that PMD 7 results are most likely dominated by straylight and not reliable. They are only shown for completeness. Furthermore, WLS data are only available for PMD 1 to 3 because of saturation in the other PMD channels.

Considering the broadband character of the PMDs, the observed PMD throughput changes are (except for PMD 4 and 7) very similar to those of the science channels with the following features:

- The UV degradation apparent in the science channels is also visible in PMD 1 to 3
- PMD 4 and 7 (which cover the same wavelength interval) show a considerably large decrease in throughput which is still unexplained (but may be related to the specific detector material).
- There are remaining seasonal variations in the data which could up to now not be corrected out. The amplitude of these seasonal variations increases with the wavelength range covered by the PMD. This issue is still unresolved.
- The PMD 6 dark signal shows a strange variation over time which is still under investigation.

page 32 of 65

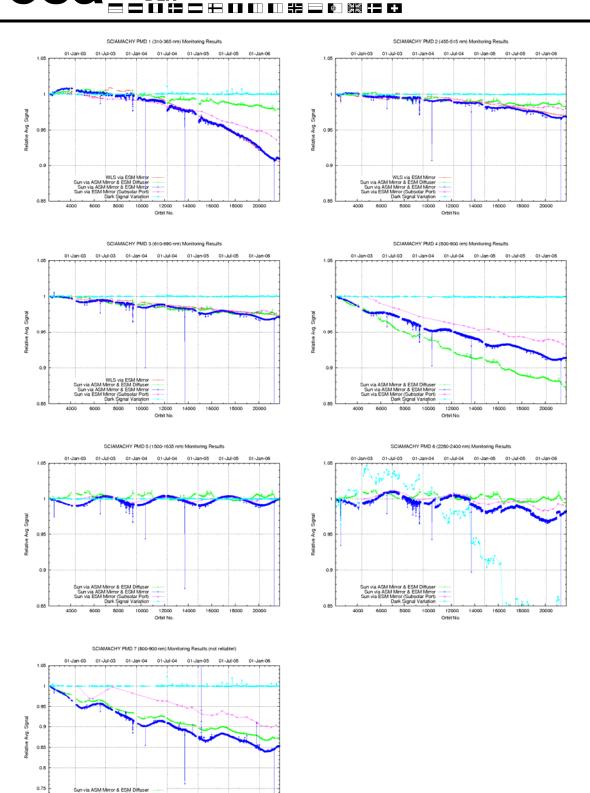


Fig. 3.13: PMD monitoring results August 2002 to April 2006

page 33 of 65

3.1.6 Problem Report Status (DLR-BO)

The problem report statistics is as follows (same status as during period July-August 2005):

• Total number of problem reports:	43
Open problem reports:	5
• New problem reports during the reporting period:	0

DATA AVAILABILITY STATISTICS 4

4.1 Downlink/Acquisition Performance

Problems are known for the Products listed in Tab. 4.1:

Product	Day	Filename	description
SCI_NL0P	14-Mar-2006	SCI_NL0PNPDK20060314_115025_000059102046_00009_21105_0056.N1 SCI_NL0PNPDK20060314_150727_000059792046_00011_21107_0058.N1	products have a high number of ISP Errors; the data format is not correct
SCI_NL0P	22-Mar-2006	SCI_NL0PNPDK20060322_073937_000060352046_00121_21217_0123.N1	products have a high number of ISP Errors; the data format is not correct
SCI_NL0P	25-Mar-2006	SCI_NL0PNPDK20060325_092538_000060482046_00165_21261_0152.N1 SCI_NL0PNPDK20060325_110518_000059662046_00166_21262_0153.N1	products have a high number of ISP Errors; the data format is not correct
SCI_NL0P	22-Apr-2006	SCI_NL0PNPDK20060422_144253_000059232047_00068_21665_0410.N1	products have a high number of ISP Errors; the data format is not correct
SCI_NL0P	28-Apr-2006	SCI_NL0PNPDK20060428_113556_000060352047_00152_21749_0457.N1	products have a high number of ISP Errors; the data format is not correct

These occurrences of data corruptions are currently under investigation.

4.2 Statistics on unconsolidated data (SCI_NL__0P, SCI_NL__1P)

This paragraph reports the availability of NRT data on a monthly basis. The statistics are based on Level 0 data and Level 1 data inventoried in the ground segment. Unavailability periods due to instrument anomalies or Satellite switch-offs are excluded. The gaps considered are only interfile gaps.

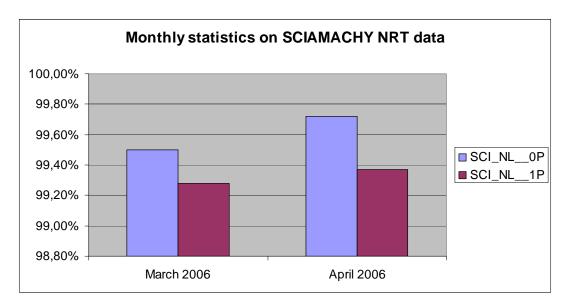


Fig. 4-1: Statistics on available unconsolidated Level 0 and Level 1 products

4.3 Statistics on consolidated data

Statistics on consolidated data products L0 and L1 are currently not available. They will be included again into the report in the next reports.

4.3.1 Anomalies on LO consolidated data products

In the past it had been reported by SOST-DLR, that the SCIAMACHY consolidated L0 data contain errors and are not complete. Following specific problems have been identified and are reported in detail in the technical notes [3] and [4]:

- For one orbit there can be more than one cL0 product. These products may be identical or different in content (disregarding the product type file counter).
- Some orbits are not covered by cL0 products although SCIAMACHY was operational.
- Some orbits are covered by cL0 products but the product duration does not comply
 with the actually planned and executed instrument operations in that particular
 orbit.
- Some cL0 products exceed the Reed Solomon correction threshold and are flagged accordingly. The occurrence of Reed Solomon errors is non-uniform.
- Until late October / early November 2003 cL0 data are hampered by an incorrect orbit number.

page 36 of 65

More details on cL0 anomalies can be found on the SOST web page, which contains a catalogue of available L0 consolidated data and description of errors. http://atmos.caf.dlr.de/projects/scops/data_availability/availability.html

The errors contained in the consolidated L0 data have been formally transferred into Observation Anomaly Reports (OARs) towards the PDS.

As a consequence in the beginning of December 2005 a dedicated meeting was held at ESA to implement a strategy to improve the product quality of cL0 data and to reprocess erroneous products in the historic data set.

A recovery plan was initiated in order to reprocess erroneous data. This activity has been completed, it remains the flagging of duplicate products in the PDS inventory.

4.4 Statistics on reprocessed data

The reprocessing of products from the time interval July 2002 to May 2004 (corresponding to cycles 7 -26, each cycle consisting of 501 orbits) with IPF 5.04 has been completed. See also BMR September-October 2005 for details.

5 LEVEL 1 PRODUCT QUALITY MONITORING

5.1 Processor Configuration

5.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 1 data is 5.04. The corresponding product specification is [2]. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL__1P_Disclaimers.pdf describes known artefacts.

Table 5.1 gives an overview of changes implemented with processor versions IPF 5.04 and 5.01.

In addition here is a summary on the definition of the SZA for Limb/Occultation measurements used in previous and actual IPFs.

For IPF versions 4.02, 5.00, 5.01, 5.04 the SZA is defined with respect to Top of Atmosphere (TOA).

Instead for IPF versions 4.03, 4.01 and earlier versions the SZA is defined with respect to Tangent Height. IPF versions 4.02 and 5.00 however were not used operationally but to generate the validation dataset for the ACVT workshop in 2004.

The upgraded IPF version 6.02 became operational on day 07 June 2006. Details about the changes implemented in this new IPF will be summarized in the corresponding BMR May-June 2006.

IPF	Description	Proc	Date	Start
Version	_	Centre		Orbit
5.04	No algorithm specification changes	PDHS-K	21-AUG-2004	12942
	were implemented, but two algorithm	LRAC	20-AUG-2004	12750
	were implemented, but two digorium	PDHS-E	16-AUG-2004	12823

page 38 of 65

	implementation errors have been corrected. In addition, code adaptations have been performed to resolve performance problems encountered during reprocessing. The list of modifications is as follows:	DPAC	12-AUG-2004	12879
	• An incorrect polarisation-ratio calculation has been corrected, to remove radiance discrepancies up to 1% between prototype and operational processor.			
	Memory leaks have been detected and eliminated			
	Two modifications have been performed to avoid level 1B processing crashes			
5.01		DPAC	31-MAR-2004	
		PDHS-E	24-MAR-2004	
		PDHS-K		
		LRAC		

Tab. 5-1: Processor Version and main changes

5.1.2 Auxiliary Data Files

For operation of the SCIAMACHY level 1 processor a set of Auxiliary files as input is required.

One subset of these auxiliary files usually changes only in correspondence with a new IPF version, namely the Initialisation file (SCI_LI1_AX), the Key Data File (SCI_KD1_AX).

In addition there is the m-factor file (SCI_MF1_AX), which shall describe the degradation of the instrument during its stay in orbit (note that the m-factor file has not been changed so far).

Another subset of Auxiliary Files are the In-flight calibration Data files which are generated when calibration measurements are included in the set of level 0 data to be processed. Four types of In-flight calibration Auxiliary files exist:

- Leakage Current Calibration (SCI_LK1_AX updated on orbital basis)
- Solar Reference Spectrum (SCI_SU1_AX updated on daily basis)
- Spectral Calibration Parameters (SCI_SP1_AX updated on a monthly basis)
- Pixel-to-Pixel Gain and Etalon Parameters (SCI_PE1_AX updated on a monthly basis)

Since 04 May 2004 LK1 Auxiliary Files (Leakage Current Calibration) were processed operationally by the IECF. A SCI_LK1_AX is generated about every orbit (if measurements do not lie in the SAA area or orbit phase constraints occur).

SU1 Auxiliary Files were operationally processed starting from day 08 May 2004, a new SCI SU1 AX file is generated every day with a validity time of two weeks.

PE1 and SP1 Auxiliary files are generated once per month with measurements of the monthly calibration orbits.

The table in Appendix A gives an overview about the Auxiliary files for the reporting period March - April 2006.

Fig. 5.1 shows statistics of the SU1 and LK1 ADFs generated operationally with the IECF. It has to be noted that unavailability periods are excluded from statistics. Generation of SU1 ADFs for March and April 2006 was 100%.

The LK1 ADF statistic is calculated by dividing the number of all LK1 ADFs by number of all available (to IECF) level 1 orbits. The statistics on available LK1 ADFs during March (53.4%) and April 2006 (44.1%) represent a nominal level of ADFs generated. The statistic does not take into account SAA and orbit phase constraints. Special analysis showed that only 6-8 orbits per day can be used for LK1 ADF processing, and therefore the performance is at 80-100%.

Hardware problems caused a delay of the generation of in flight SU1 ADFs, which needed to be generated manually with a time delay of up to 1 week.

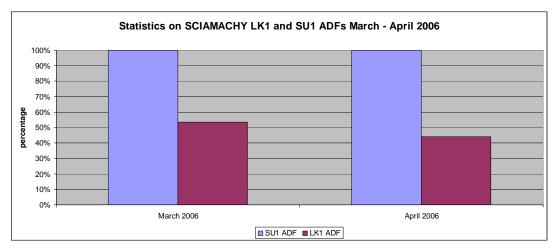


Fig. 5-1: Statistics on LK1 and SU1 processing

5.1.3 Spectral Performance

Future reports will contain analyses of spectral performance.

5.1.4 Radiometric Performance

Future reports will contain analyses of spectral performance.

page 40 of 65

5.1.5 Other Calibration Results

5.1.5.1 SMR analysis

The IECF generates daily SU1 Auxiliary Files, that contain new sun mean reference spectra for the different possible modes (e.g., subsolar, ESM diffuser, occultation).

Fig. 5-2 to Fig. 5-5 show the ratios of SMR spectra derived from calibrated SMR/ESM during the months March – April 2006. The ratios were determined by dividing the spectra of the beginning of each month to a set of days during each month. All ratios are not corrected for variation of distance earth/sun.

In detail the spectra used for the ratios of each month are the following:

• March 2006

Reference SMR - 01 March 2006

SMR used for ratios: 02, 03, 04, 05, 06, 07, 14, 21, 28 March 2006

• April 2006

Reference SMR - 01 April 2006

SMR used for ratios: 02, 03, 04, 05, 09, 10, 14, 21, 28 April 2006

The overall changes lie between 1 - 2 % during one month. In channel 1 around pixel 550 (at 282 nm) some strong features can be noticed, as well as in channel 2 near pixel 840 (near 393 nm). These strong features coincide with the Mg II and Ca Fraunhofer lines respectively. These lines are partially formed in the solar chromosphere and are known to change with solar variability.

The weaker spectral features in channel 2 (e.g. near pixels 550, 650,750), on the other hand, correlate with strong Fraunhofer lines, which are not chromospheric. These features probably arise from small wavelength shifts (order of 1/100 of a pixel).

Generally a spectral feature could have significant impact on the product quality, especially when the affected spectral parts are used for DOAS retrieval.

Etalon like patterns as noticed during January/February 2006 do not occur in the actual reporting period. This correlates to the fact that no new SCI_PE1_AX ADF was processed and disseminated.

The large features in the end of channel 6 (channel 6+) and channels 7 and 8 are due to bad pixels (no bad pixel correction applied).

Note that the bad pixel mask used is still from the on ground calibration.

A regular update of the bad pixel mask will be foreseen starting with IPF 6.02. However a bad pixel correction will not be applied to the SMR spectra, but only to PMD out-of-band factors, in order to enable the user to apply a different mask from the one provided by the ADF.

Due to the instrument switch offs in April the SMR ratios are not decreasing with time, as could be noticed in previous reports (e.g. ratio 09/01 April in yellow in Fig. 5-4). This can be explained with the thermal environment that has not yet reached stability after the switch off.

Fig. 5-6 and Fig. 5-7 show SMR ratios on a long term trend dividing the ESM spectra from days 31-Mar-2003 and 31-Mar-2003, respectively 29-Apr-2003 and 29-Apr-2006. The first spectrum available exists for 18-Jul-2002. However to consider sun/earth distance, the ratio was performed with spectra from same calendar days.

What can be concluded is that for channels 1-2 an average degradation of about 7% is observed, channels 3 degrades by about 2% and channels 4-6 degrade by less than 1%. The signal in channels 7 and 8 has increased with respect to the SMR of year 2002. This is consistent with the Light Path monitoring at SOST-IFE. The effect is due to ice contamination for the last two channels.

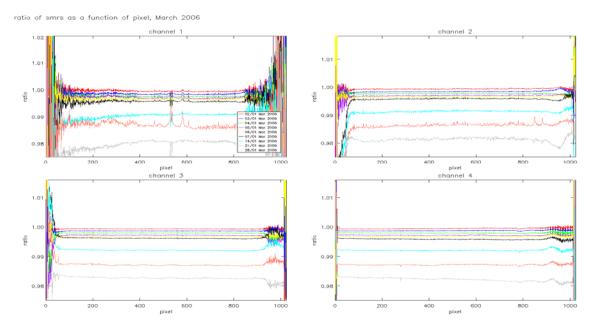


Fig. 5-2: SMR ratios per detector channel 1-4 (changes during March 2006)

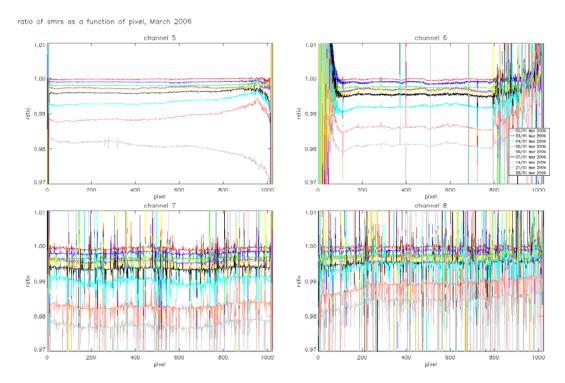


Fig. 5-3: SMR ratios per detector channel 5-8 (changes during March 2006)

serco

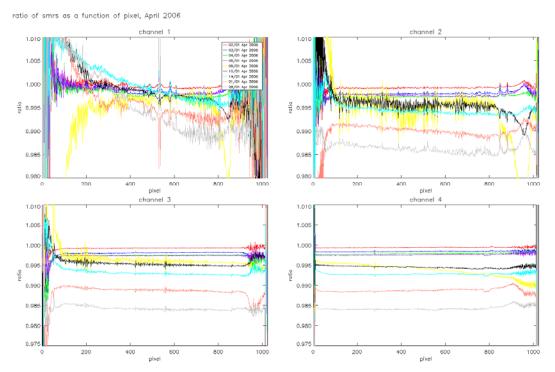


Fig. 5-4: SMR ratios per detector channel 1-4 (changes during April 2006)

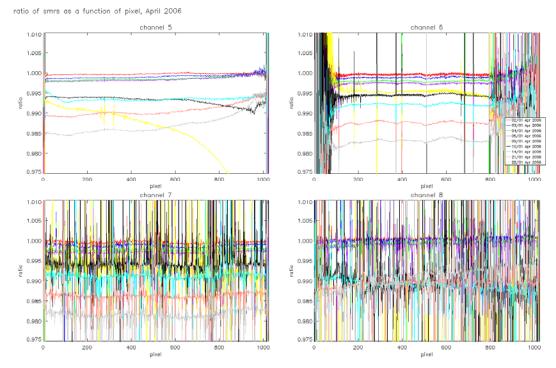


Fig. 5-5: SMR ratios per detector channel 5-8 (changes during April 2006)

smr ratio, D0 31/03/2006 divided by 31/03/2003

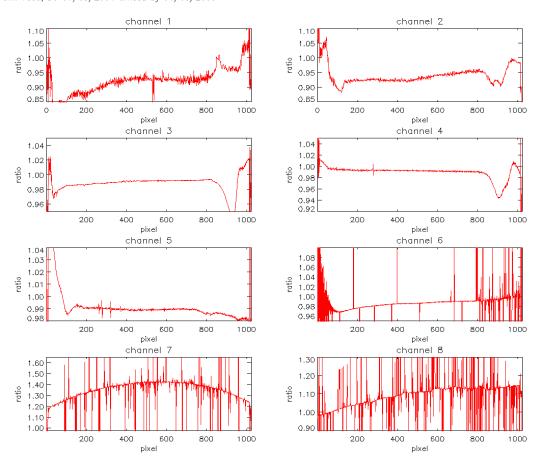


Fig. 5-6: SMR ratios per detector channel on Long Term Trend

smr ratio, DO 29/04/2006 divided by 29/04/2003

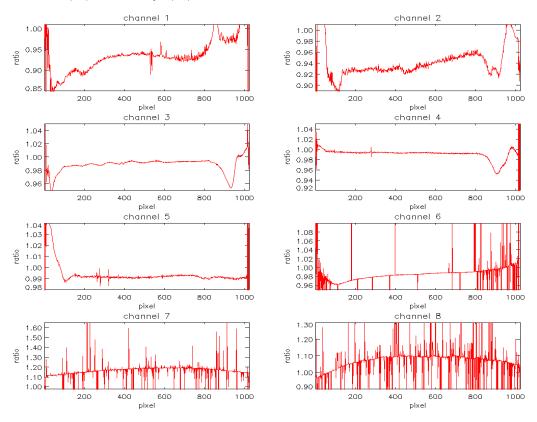


Fig. 5-7: SMR ratios per detector channel on Long Term Trend

5.1.5.2 LK1 analysis

On an orbital basis a leakage current calibration is performed, if measurement data do not lie in the South Atlantic Anomaly region.

In Fig. 5-8 to Fig. 5-11 the leakage constant part FPN (fixed pattern noise) of the LK1 ADFs are analysed by determining the ratios of the FPN of each month with a time distance of one orbit, one day, one week, two weeks, three weeks and a month.

For channels 1-5 and the first part of channel 6, during up to three weeks nearly no changes can be noticed. Sudden jumps however between the different dark current ratios can be seen for channels 1, 2, 4 and 5 between 2 and 3 weeks. They are very small but above the noise level.

The IR channels show a lot of noise. Here an improvement is foreseen with the new processor version IPF 6.02, where the time dependent part of the leakage current will be considered.

serco

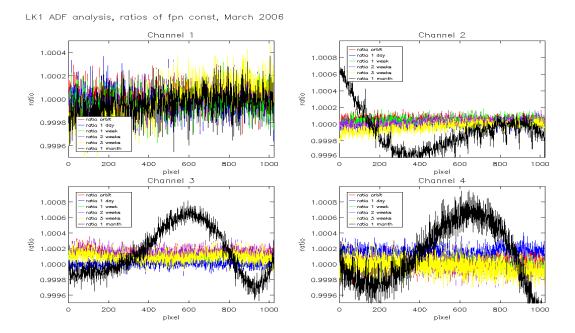


Fig. 5-7: dark current ratios (constant part) channel 1-4 during March 2006, Reference Spectrum used: Orbit 20916, 01-March-2006

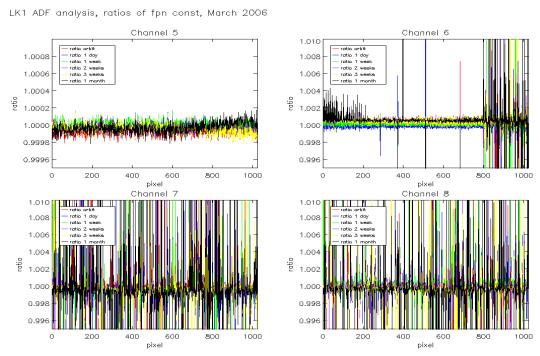


Fig. 5-8: dark current ratios (constant part) channel 5-8 during March 2006, Reference Spectrum used: Orbit 20916, 01-March-2006

page 47 of 65

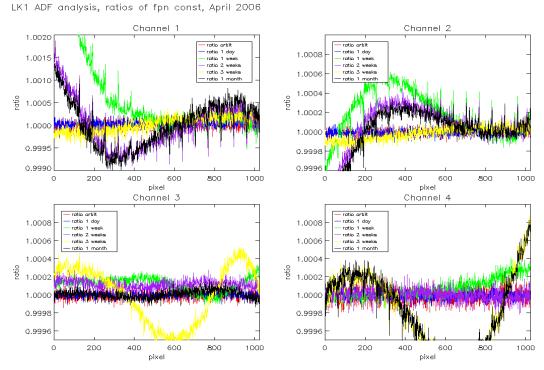


Fig. 5-9: dark current ratios (constant part) channel 1-4 during April 2006, Reference Spectrum used: Orbit 21360, 01-Apr-2006

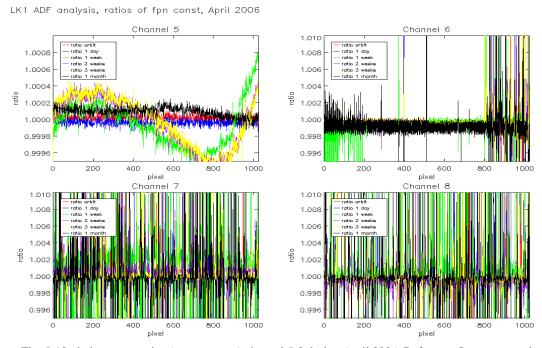


Fig. 5-10: dark current ratios (constant part) channel 5-8 during April 2006, Reference Spectrum used: Orbit 21360, 01-Apr-2006

5.1.5.3 PE1 analysis

During the reporting period monthly calibration new SCI_PE1_AX files were generated.

5.1.6 Pointing Performance

The new SCIAMACHY processor IPF 6.02 contains the implementation of a limb pointing correction scheme. IFE Bremen was analysing first products generated with the prototype of the new IPF and presented the results during the last SSAG 23/24 March 2006, using the Tangent Height retrieval algorithm TRUE.

Two prototype versions 6.0 A and 6.0 B were used to generate L1b products for analysis:

- 6.0 A uses the AUX-FRA file and the default IPF 6 init file with SCIAMACHY pitch and azimuth misalignment w.r.t. ENVISAT from on ground calibration
- 6.0 B uses the AUX-FRA file and an init file without SCIAMACHY pitch misalignment

Further L1b data generated with IPF 5.04 (no pointing correction implemented) were used for comparison.

Conclusions from that analysis were the following:

- Both TRUE and validation results show indications for horizontally tilted azimuthal scanning
- The tilts seen in TRUE and the O3 validation results are qualitatively consistent
- East-west difference for versions 6.0A and B about 80 m larger than for version 5.04
- Additional correction for possible roll misalignment reduces East-west difference in TH offset by about 160 m
- East-west TH difference by about 100 m larger since December 2003 orbit model update

Fig 5-11 shows the result for the long-term variations in the East-West TH difference.

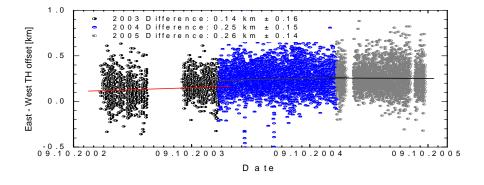


Figure 5-11: Long Term variations in the East-West TH difference

page 49 of 65

6 LEVEL 2 NRT PRODUCT QUALITY MONITORING

6.1 Processor Configuration

6.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 2 data is 5.04. The according product specification is [2]. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL_2P_Disclaimers.pdf describes known artefacts. SCIAMACHY NRT products generated with IPF 5.04 contain wrong ozone and AMF values due to a wrong handling of the seasonal index 3. This occurs to data starting from day 15 October 2005 until 31 December 2005 (as well as for previous years).

Table 6.1 shows the implementation dates of the IPF at the different PDS processing centres and the main modifications implemented.

IPF	Description		Proc	Date	Start
Version			Centre		Orbit
5.04	No algorithm specification	changes	PDHS-K	21-AUG-2004	12942
	were implemented, but two al	_	LRAC	20-AUG-2004	12750
	were impremented, but two un	Soriumi	PDHS-E	16-AUG-2004	12823

page 50 of 65

	implementation errors have been	DPAC	12-AUG-2004	12879
	corrected. In addition, code adaptations have been performed to			
	resolve performance problems			
	encountered during reprocessing. The			
	list of modifications is as follows:			
	• The incorrect handling of the season index 4 has been corrected.			
	An incorrect polarisation-ratio			
	calculation has been corrected, to			
	remove radiance discrepancies up			
	to 1% between prototype and operational processor.			
	Memory leaks have been detected and eliminated			
	• An adaptation has been			
	implemented to allow co-			
	existence with the initialisation file used by the Off-Line			
	processor			
5.01	description for cloud MDS	DPAC	31-MAR-2004	
	updated	PDHS-E	24-MAR-2004	
	• minor changes in MPI and USA	PDHS-K		
	climatology description	LRAC		
	latitude grids fixed			
	list of surface types fixed, note about vagatation index added			
	about vegetation index addedO₃ FM formula fixed sizes of			
	SCIA FM spectra fixed latitude			
	zones fixed			
	• solar zenith angle grid fixed			

Tab. 6-1: Level 2 Processor Configuration

6.1.2 Auxiliary Data Files

Auxiliary Files being used as input for SCI_NL__2P products are listed in table 6-2. These ADF files are generally not changed.

SCI_FM2_AXVIEC20040309_092553_19990101_000000_20991231_235959

page 51 of 65

SCI_BL2_AXVIEC20020220_093709_20020101_000000_20200101_000000
SCI_CC2_AXVIEC20020220_094004_20020101_000000_20200101_000000
SCI_CL2_AXVIEC20020220_094214_20020101_000000_20200101_000000
SCI_CS2_AXVIEC20020220_094417_20020101_000000_20200101_000000
SCI_MF2_AXVIEC20040309_093236_19990101_000000_20991231_235959
SCI_PF2_AXVIEC20020220_100450_20020101_000000_20200101_000000
SCI_PR2_AXVIEC20020220_100642_20020101_000000_20200101_000000
SCI_RC2_AXVIEC20020220_100912_20020101_000000_20200101_000000
SCI_UC2_AXVIEC20040309_092027_19990101_000000_20991231_235959
SCI_SF2_AXVIEC20020220_101039_20020101_000000_20200101_000000
SCI_LI2_AXVIEC20040308_170000_20020101_000000_20200101_000000

Tab. 6-2: Level 2 Auxiliary Files

6.2 O_3 consistency checking

Future reports will contain information on this issue.

6.3 NO₂ consistency checking

NO₂ vertical column density (VCD) values of one month were averaged using QUADAS, filtering those data where the VCD flags are 0. Diurnal variations have not been corrected (no model applied). Fig. 6-1 and Fig. 6-3 are aimed at processing consistency checking and are not intended for geophysical interpretation.

Generally, high concentration of NO₂ is expected over industrial regions, as over North America, especially the East coast, over central Europe, China and South Africa.

6.3.1 NO₂ VCD map March 2006

High NO₂ VCD values can be seen over industrial regions.

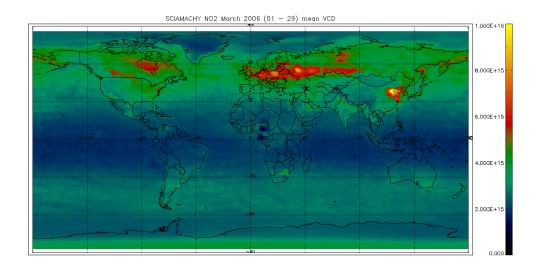


Fig. 6-1: NO₂ VCD world map 01- 29 March 2006 – monthly average

6.3.1.1 NO₂ VCD anomalous values during 30-31 March 2006

During days 30 and 31 March anomalous high NO₂ VCD values were noticed in the latitude range 40-60 degree. Fig. 6-2 shows the NO₂ world map for day 30 March with anomalous high values in red. During daily systematic monitoring the anomalous values were appearing only in NRT products and not in the Level 2 Offline product. Neither could these values be reproduced with the prototype. The same anomaly occurred in year 2005 for exactly the same days: 30-31 March. The reason is a wrong climatology lookup table.

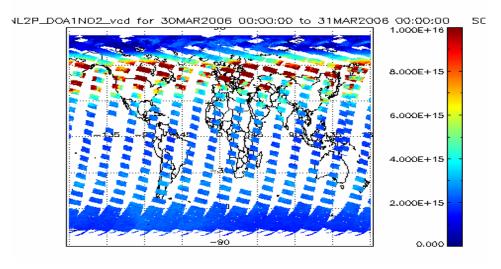


Fig. 6.2: NO₂ VCD world map 30 March 2006

6.3.2 NO₂ VCD map April 2006

The world map showing the distribution of mean values of NO₂ VCD values of April 2006 contains unphysical values at low latitudes which need to be investigated.

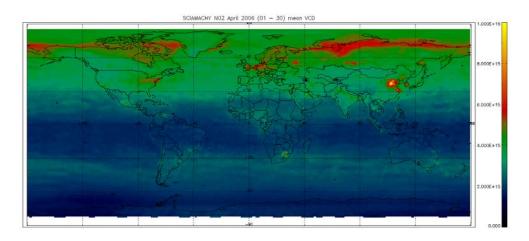


Fig. 6-3: NO₂ VCD world map 01-30 April 2006 – monthly average

7 LEVEL 2 OFFLINE PRODUCT QUALITY MONITORING

7.1 Processor Configuration

7.1.1 Version

In January 2005 the SCIAMACHY Level 2 Offline product SCI_OL__2P was released, data are generated with processor version 2.5.

The according product specification is PO-RS-MDA-GS-2009_15_3H. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_OL_2P_Disclaimers.pdf describes known artefacts.

SCI_OL__2P products contain geo-located vertical column amounts of O₃, NO₂ Nadir measurements, as well as stratospheric Limb profiles of O₃, NO₂. Additionally the fractional cloud coverage is derived and provided as product to the user.

A major upgrade of the L1b-L2 Offline processor to version 3.0 is currently in progress. The FAT took place 26-27 April 2006 with this up-coming version.

7.1.2 Auxiliary Data Files

7.1.3 Monitoring results

In future reports results on Limb and Nadir products will be presented here.

8 VALIDATION ACTIVITIES AND RESULTS

8.1 SCIAMACHY-ECMWF Comparisons using SCI_RV__2P

8.1.1 Summary of the ECMWF SCIAMACHY monthly report for March 2006

- SCIAMACHY SCI RV 2P data quality is mainly stable.
- SCIAMACHY data about 10 DU lower than ECMWF values in the global mean until the 23th of March. Slightly smaller departures were found during the last week of March.
- Large scatter of SCIAMACHY ozone data, in particular at high latitudes in the northern hemisphere.
- The monitoring statistics for March were produced with the operational ECMWF model, CY30R1

The full report is available at http://earth.esa.int/pcs/envisat/tmp_calval_res/

Below see the ECMWF plot on SCIAMACHY mean observation in DU.

page 55 of 65

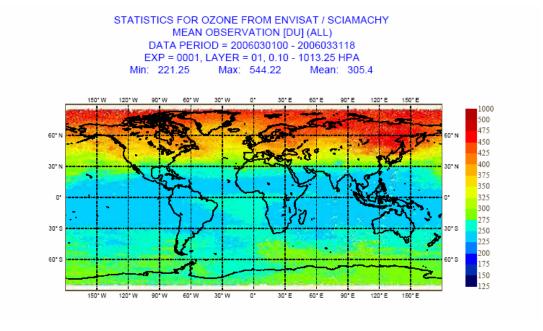


Fig. 8-1: Ozone Mean ECMWF March 2006

Summary of the ECMWF SCIAMACHY monthly report for April 2006

- Degraded SCIAMACHY SCI RV 2P data quality following the ENVISAT anomaly on April, 6th, and the switch offs and restarts of SCIAMACHY during April 2006.
- On global average, the departures between the SCIAMACHY ozone data and the ECMWF ozone analyses degraded from -10DU in March to -15DU during the week between 10th and 17th of April. A further degradation (from -15DU to -20DU) was seen during the last week of April.
- Large scatter of SCIAMACHY ozone data, in particular at high latitudes in the northern hemisphere.
- Large scatter of the first guess departures vs. latitudes, at high latitudes in both hemispheres.
- The monitoring statistics for April were produced with the operational ECMWF model, CY30R1.

The full report is available at http://earth.esa.int/pcs/envisat/tmp_calval_res/

Below see the ECMWF plot on SCIAMACHY mean observation in DU.

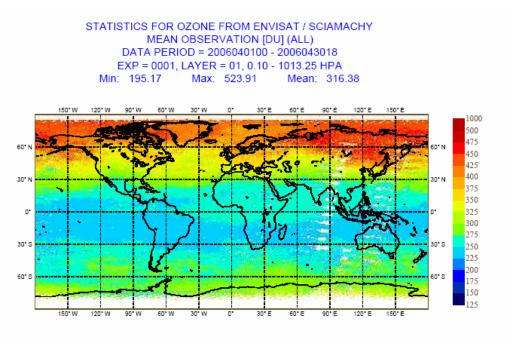


Fig. 8-2: Ozone Mean ECMWF April 2006

8.2 Statistics from Inter comparison with External Data

Future reports will contain information on this issue.

page 57 of 65

APPENDIX A - OVERVIEW OPERATIONAL ADFS

Туре	ADF Name
PE1 AX	SCI_PE1_AXVIEC20060116_105439_20060112_000000_20900101_000000
SP1 AX	SCI_SP1_AXVIEC20060213_090208_20060211_000000_20060701_000000
S1 1_1111	SCI_SP1_AXVIEC20060314_114829_20060312_000000_20060701_000000
	SCI_SP1_AXVIEC20060413_074612_20060411_000000_20060801_000000
SU1_AX	SCI_SU1_AXVIEC20060307_110353_20060301_201211_20060315_211853
SUI_AA	SCI_SU1_AXVIEC20060307_113233_20060302_004552_20060316_022024
	SCI_SU1_AXVIEC20060307_115253_20060302_004532_20060310_022024 SCI_SU1_AXVIEC20060307_115651_20060303_001407_20060317_014840
	SCI_SU1_AXVIEC20060307_131328_20060304_201638_20060318_212429
	SCI_SU1_AXVIEC20060308_061057_20060305_005156_20060319_224029
	SCI_SU1_AXVIEC20060309_061124_20060306_020003_20060320_124148
	SCI_SU1_AXVIEC20060310_060949_20060307_012817_20060321_213525
	SCI_SU1_AXVIEC20060311_060846_20060308_005632_20060322_020809
	SCI_SU1_AXVIEC20060311_000040_20000306_003032_20000322_02000 SCI_SU1_AXVIEC20060312_060821_20060309_002530_20060323_020131
	SCI_SU1_AXVIEC20060313_060756_20060310_013337_20060324_214059
	SCI_SU1_AXVIEC20060314_060619_20060311_010319_20060325_114650
	SCI_SU1_AXVIEC20060315_060657_20060312_003134_20060326_020736
	SCI_SU1_AXVIEC20060315_000037_20060312_003134_20060320_020730 SCI_SU1_AXVIEC20060316_060730_20060313_013939_20060327_214713
	SCI_SU1_AXVIEC20060317_060603_20060314_010754_20060328_210856
	SCI_SU1_AXVIEC20060318_061215_20060315_003609_20060329_021004
	SCI_SU1_AXVIEC20060319_061014_20060316_000423_20060330_014503
	SCI_SU1_AXVIEC20060320_060749_20060317_011313_20060331_211953
	SCI_SU1_AXVIEC20060321_060747_20060318_004245_20060401_021541
	SCI_SU1_AXVIEC20060322_061228_20060319_000942_20060402_014953
	SCI_SU1_AXVIEC20060322_001226_20000319_000942_20000402_014935 SCI_SU1_AXVIEC20060323_060847_20060320_011916_20060403_120305
	SCI_SU1_AXVIEC20060324_060810_20060321_004859_20060404_022054
	SCI_SU1_AXVIEC20060325_061042_20060322_001501_20060405_014910
	SCI_SU1_AXVIEC20060327_065114_20060324_005410_20060407_105738
	SCI_SU1_AXVIEC20060327_094304_20060323_201819_20060406_213248
	SCI_SU1_AXVIEC20060328_061135_20060325_002151_20060408_020024
	SCI_SU1_AXVIEC20060331_144033_20060326_202344_20060409_213708
	SCI SU1 AXVIEC20060331 150857 20060327 100355 20060410 114336
	SCI_SU1_AXVIEC20060331_154510_20060328_210311_20060411_221600
	SCI_SU1_AXVIEC20060405_103109_20060329_202909_20060412_214332
	SCI_SU1_AXVIEC20060405_124106_20060330_200007_20060413_210403
	SCI SU1 AXVIEC20060405 130442 20060331 003304 20060414 005221
	SCI_SU1_AXVIEC20060405_131815_20060401_203751_20060415_215018
	SCI_SU1_AXVIEC20060405_132841_20060402_101558_20060416_115316
	SCI_SU1_AXVIEC20060406_060922_20060403_004039_20060417_021055
	SCI_SU1_AXVIEC20060407_135621_20060404_001017_20060418_014449
	SCI_SU1_AXVIEC20060410_095259_20060405_201021_20060419_212437
	SCI_SU1_AXVIEC20060410_100324_20060409_205329_20060423_223904
	SCI_SU1_AXVIEC20060412_060434_20060409_205329_20060423_223904
	SCI_SU1_AXVIEC20060413_060822_20060410_001524_20060424_015705
	SCI SU1 AXVIEC20060414 060827 20060411 012619 20060425 213636
	SCI_SU1_AXVIEC20060415_060740_20060412_005435_20060426_020903
	SCI_SCI_1M11LC20000T13_000/T0_20000T12_003T33_20000T20_020703

page 58 of 65

	SCI_SU1_AXVIEC20060416_060501_20060413_002627_20060427_020247
	SCI_SU1_AXVIEC20060417_060553_20060414_090027_20060428_214122
	SCI_SU1_AXVIEC20060421_160337_20060415_100557_20060429_114629
	SCI_SU1_AXVIEC20060421_163203_20060420_203807_20060504_215128
	SCI_SU1_AXVIEC20060424_172534_20060421_182637_20060505_212135
	SCI_SU1_AXVIEC20060425_085216_20060422_033412_20060506_223103
	SCI_SU1_AXVIEC20060426_060547_20060423_014724_20060507_123336
	SCI_SU1_AXVIEC20060427_060751_20060424_011614_20060508_212736
	SCI_SU1_AXVIEC20060428_060746_20060425_004807_20060509_223733
	SCI_SU1_AXVIEC20060429_060711_20060426_001456_20060510_015417
	SCI_SU1_AXVIEC20060430_060704_20060427_012319_20060511_120919
	SCI_SU1_AXVIEC20060501_060938_20060428_005210_20060512_020614
	SCI_SU1_AXVIEC20060502_060648_20060429_002151_20060513_015957
	SCI_SU1_AXVIEC20060503_060725_20060430_013000_20060514_213758
LK1_AX	SCI_LK1_AXVIEC20060306_105500_20060301_022711_20060315_041013
_	SCI_LK1_AXVIEC20060306_112528_20060301_055122_20060315_073447
	SCI_LK1_AXVIEC20060306_115922_20060301_230601_20060316_003936
	SCI_LK1_AXVIEC20060306_121643_20060302_022628_20060316_033714
	SCI_LK1_AXVIEC20060306_123954_20060302_051843_20060316_065946
	SCI_LK1_AXVIEC20060306_131432_20060302_223416_20060317_000752
	SCI_LK1_AXVIEC20060306_133432_20060303_015443_20060317_030537
	SCI_LK1_AXVIEC20060306_135554_20060303_044755_20060317_062853
	SCI LK1 AXVIEC20060306 161236 20060303 220147 20060317 233608
	SCI LK1 AXVIEC20060306 163348 20060304 012258 20060318 023508
	SCI_LK1_AXVIEC20060306_170552_20060304_041515_20060318_055650
	SCI_LK1_AXVIEC20060306_174801_20060305_005156_20060319_020219
	SCI_LK1_AXVIEC20060306_181142_20060305_034427_20060319_052550
	SCI_LK1_AXVIEC20060306_181516_20060305_052502_20060319_070540
	SCI_LK1_AXVIEC20060306_183625_20060305_205032_20060319_224029
	SCI_LK1_AXVIEC20060306_202035_20060301_073402_20060315_083910
	SCI_LK1_AXVIEC20060306_204917_20060301_083718_20060315_102211
	SCI_LK1_AXVIEC20060306_205638_20060301_102054_20060315_115958
	SCI_LK1_AXVIEC20060306_211101_20060301_115829_20060315_133910
	SCI_LK1_AXVIEC20060306_212713_20060301_133756_20060315_151705
	SCI_LK1_AXVIEC20060306_213746_20060301_151531_20060315_165451
	SCI_LK1_AXVIEC20060307_022657_20060306_031039_20060320_045346
	SCI_LK1_AXVIEC20060307_030057_20060302_094705_20060316_112708
	SCI_LK1_AXVIEC20060307_032006_20060302_112549_20060316_130806
	SCI LK1 AXVIEC20060307 033805 20060302 130612 20060316 144640
	SCI_LK1_AXVIEC20060307_035333_20060302_144455_20060316_162457
	SCI_LK1_AXVIEC20060307_040852_20060302_162231_20060316_180048
	SCI_LK1_AXVIEC20060307_042258_20060302_175952_20060316_194128
	SCI_LK1_AXVIEC20060307_043349_20060303_062722_20060317_073649
	SCI_LK1_AXVIEC20060307_045004_20060303_073459_20060317_091801
	SCI_LK1_AXVIEC20060307_052247_20060303_091630_20060317_105557
	SCI_LK1_AXVIEC20060307_053759_20060303_105405_20060317_123638
	SCI_LK1_AXVIEC20060307_055546_20060303_123428_20060317_141507
	SCI_LK1_AXVIEC20060307_061259_20060303_141312_20060317_155309
	SCI_LK1_AXVIEC20060307_061344_20060303_155047_20060317_173021
	SCI_LK1_AXVIEC20060307_061934_20060303_172808_20060317_190903
	SCI_LK1_AXVIEC20060307_063928_20060304_055538_20060318_070509
L	

page 59 of 65

SCI LK1 AXVIEC20060307 065245 20060304 070315 20060318 084717 SCI LK1 AXVIEC20060307 070210 20060304 084542 20060318 102529 SCI LK1 AXVIEC20060307 084012 20060306 234826 20060321 012208 SCI LK1 AXVIEC20060307 090630 20060304 102317 20060318 120613 SCI_LK1_AXVIEC20060307_092243_20060304_120449_20060318_134423 SCI_LK1_AXVIEC20060307_094101_20060304_152055_20060318_170011 SCI LK1 AXVIEC20060307 100451 20060304 165843 20060318 183826 SCI LK1 AXVIEC20060307 104559 20060305 070442 20060319 081410 SCI LK1 AXVIEC20060307 110545 20060305 081302 20060319 095547 SCI LK1 AXVIEC20060307 111833 20060305 095446 20060319 113408 SCI LK1 AXVIEC20060307 112743 20060305 113305 20060319 131431 SCI LK1 AXVIEC20060307 114049 20060305 131244 20060319 145156 SCI_LK1_AXVIEC20060307_114914_20060305_145007_20060319_163020 SCI LK1 AXVIEC20060307 120038 20060305 162755 20060319 180750 SCI LK1 AXVIEC20060307 121753 20060306 063354 20060320 074238 SCI_LK1_AXVIEC20060307_122839_20060306_074119_20060320_092418 SCI_LK1_AXVIEC20060307_123813_20060306_092303_20060320_110351 SCI_LK1_AXVIEC20060307_124848_20060306_110229_20060320_124148 SCI_LK1_AXVIEC20060307_125612_20060306_124005_20060320_142058 SCI_LK1_AXVIEC20060307_130842_20060306_141931_20060320_155656 SCI_LK1_AXVIEC20060307_131632_20060306_155257_20060320_173606 SCI_LK1_AXVIEC20060307_132302_20060306_173536_20060320_191503 SCI LK1 AXVIEC20060307 133101 20060306 191408 20060320 205542 SCI_LK1_AXVIEC20060308_044415_20060307_085106_20060321_103051 SCI_LK1_AXVIEC20060308_050555_20060307_102937_20060321_121124 SCI LK1 AXVIEC20060308 052617 20060307 121012 20060321 135050 SCI LK1 AXVIEC20060308 092729 20060307 134843 20060321 152838 SCI_LK1_AXVIEC20060308_093843_20060307_152714_20060321_170609 SCI_LK1_AXVIEC20060308_095304_20060307_170502_20060321_184446 SCI_LK1_AXVIEC20060308_100639_20060307_184224_20060321_202217 SCI_LK1_AXVIEC20060309_032927_20060308_070953_20060322_081831 SCI LK1 AXVIEC20060309 034658 20060308 081622 20060322 100138 SCI LK1 AXVIEC20060309 041519 20060308 095958 20060322 113859 SCI LK1 AXVIEC20060309 042956 20060308 113733 20060322 132009 SCI_LK1_AXVIEC20060309_044422_20060308_131904_20060322_145615 SCI_LK1_AXVIEC20060309_045901_20060308_145435_20060322_163506 SCI_LK1_AXVIEC20060309_052712_20060308_163223_20060322_181306 SCI_LK1_AXVIEC20060309_054025_20060308_181204_20060322_195157 SCI LK1 AXVIEC20060309 083055 20060306 002055 20060320 015243 SCI LK1 AXVIEC20060309 115039 20060308 020711 20060322 035050 SCI_LK1_AXVIEC20060310_032550_20060309_063810_20060323_074811 SCI LK1 AXVIEC20060310 034246 20060309 074643 20060323 093023 SCI_LK1_AXVIEC20060310_040147_20060309_092923_20060323_110945 SCI_LK1_AXVIEC20060310_041516_20060309_110849_20060323_124750 SCI_LK1_AXVIEC20060310_043140_20060309_124624_20060323_142744 SCI LK1 AXVIEC20060310 044349 20060309 142551 20060323 160424 SCI_LK1_AXVIEC20060310_050058_20060309_160135_20060323_174315 SCI LK1 AXVIEC20060310 052113 20060309 174100 20060323 192058 SCI_LK1_AXVIEC20060310_083236_20060310_013337_20060324_024534 SCI_LK1_AXVIEC20060311_032718_20060310_071555_20060324_085919 SCI LK1 AXVIEC20060311 034258 20060310 085835 20060324 103838

page 60 of 65

SCI LK1 AXVIEC20060311 040707 20060310 103706 20060324 121555 SCI LK1 AXVIEC20060311 045444 20060310 121441 20060324 135608 SCI LK1 AXVIEC20060311 052009 20060310 135408 20060324 153351 SCI LK1 AXVIEC20060311 082320 20060309 221310 20060323 234921 SCI_LK1_AXVIEC20060311_084629_20060311_010319_20060325_021450 SCI_LK1_AXVIEC20060311_085754_20060310_153239_20060324_171237 SCI LK1 AXVIEC20060311 091107 20060310 171130 20060324 184840 SCI LK1 AXVIEC20060312 035340 20060311 071831 20060325 082449 SCI LK1 AXVIEC20060312 041713 20060311 082351 20060325 100722 SCI LK1 AXVIEC20060312 043046 20060311 100631 20060325 114650 SCI LK1 AXVIEC20060312 044246 20060311 114557 20060325 132424 SCI LK1 AXVIEC20060312 045904 20060311 132224 20060325 150425 SCI_LK1_AXVIEC20060312_052030_20060311_150259_20060325_164100 SCI LK1 AXVIEC20060312 054107 20060311 163843 20060325 182012 SCI LK1 AXVIEC20060312 082846 20060312 003134 20060326 020736 SCI LK1 AXVIEC20060313 023648 20060312 032223 20060326 050628 SCI LK1 AXVIEC20060313 030139 20060312 210435 20060326 221903 SCI_LK1_AXVIEC20060313_031224_20060312_064538_20060326_075404 SCI_LK1_AXVIEC20060313_032504_20060312_075303_20060326_093534 SCI_LK1_AXVIEC20060313_033627_20060312_093447_20060326_111514 SCI_LK1_AXVIEC20060313_034735_20060312_111414_20060326_125512 SCI_LK1_AXVIEC20060313_040555_20060312_125353_20060326_143200 SCI LK1 AXVIEC20060313 041724 20060312 160947 20060326 174915 SCI_LK1_AXVIEC20060313_042810_20060312_174807_20060326_192716 SCI_LK1_AXVIEC20060313_043459_20060312_192456_20060326_210608 SCI LK1 AXVIEC20060313 081905 20060313 013939 20060327 025244 SCI LK1 AXVIEC20060314 032022 20060313 061355 20060327 072309 SCI_LK1_AXVIEC20060314_033220_20060313_072228_20060327_090423 SCI_LK1_AXVIEC20060314_034115_20060313_090303_20060327_104415 SCI_LK1_AXVIEC20060314_034955_20060313_104339_20060327_122403 SCI_LK1_AXVIEC20060314_043401_20060313_122209_20060327_140120 SCI LK1 AXVIEC20060314 045128 20060313 135932 20060327 153841 SCI_LK1_AXVIEC20060314_051304_20060313_153611_20060327_171707 SCI LK1 AXVIEC20060314 053758 20060313 171557 20060327 185418 SCI_LK1_AXVIEC20060315_035506_20060314_082915_20060328_101207 SCI_LK1_AXVIEC20060315_041213_20060314_101046_20060328_115216 SCI_LK1_AXVIEC20060315_042650_20060314_115026_20060328_132948 SCI_LK1_AXVIEC20060315_043804_20060314_132748_20060328_150845 SCI LK1 AXVIEC20060315 045555 20060314 150728 20060328 164732 SCI LK1 AXVIEC20060315 051612 20060314 164503 20060328 182509 SCI_LK1_AXVIEC20060316_033819_20060315_094011_20060329_112018 SCI LK1 AXVIEC20060316 034749 20060315 111842 20060329 125834 SCI_LK1_AXVIEC20060316_035923_20060315_125713_20060329_143755 SCI_LK1_AXVIEC20060316_041505_20060315_143640_20060329_161411 SCI_LK1_AXVIEC20060316_042435_20060315_161128_20060329_175205 SCI LK1 AXVIEC20060317 043016 20060316 072644 20060330 090917 SCI_LK1_AXVIEC20060317_044200_20060316_090828_20060330_104948 SCI LK1 AXVIEC20060317 045534 20060316 104755 20060330 122737 SCI_LK1_AXVIEC20060317_051545_20060316_122530_20060330_140701 SCI_LK1_AXVIEC20060317_054838_20060316_140456_20060330_154156 SCI LK1 AXVIEC20060317 055407 20060316 153944 20060330 172231

page 61 of 65

SCI LK1 AXVIEC20060317 055413 20060316 172121 20060330 190143 SCI LK1 AXVIEC20060318 042633 20060317 083644 20060331 101711 SCI LK1 AXVIEC20060318 044325 20060317 101611 20060331 115711 SCI_LK1_AXVIEC20060318_045047_20060317_115550_20060331_133450 SCI_LK1_AXVIEC20060318_050921_20060317_133313_20060331_151444 SCI_LK1_AXVIEC20060318_052411_20060317_151252_20060331_164917 SCI_LK1_AXVIEC20060318_053046_20060317_164618_20060331_182925 SCI LK1 AXVIEC20060319 033716 20060318 080501 20060401 094625 SCI LK1 AXVIEC20060319 034856 20060318 094536 20060401 112611 SCI LK1 AXVIEC20060319 040520 20060318 112515 20060401 130418 SCI LK1 AXVIEC20060319 041616 20060318 130238 20060401 144300 SCI LK1 AXVIEC20060319 042616 20060318 144109 20060401 161917 SCI_LK1_AXVIEC20060319_043550_20060318_161652_20060401_175741 SCI_LK1_AXVIEC20060320_030947_20060319_062444_20060402_073354 SCI LK1 AXVIEC20060320 032144 20060319 073317 20060402 091553 SCI_LK1_AXVIEC20060320_033404_20060319_091448_20060402_105551 SCI_LK1_AXVIEC20060320_034632_20060319_105428_20060402_123434 SCI_LK1_AXVIEC20060320_041804_20060319_123259_20060402_141212 SCI_LK1_AXVIEC20060320_043439_20060319_141034_20060402_154955 SCI_LK1_AXVIEC20060320_045443_20060319_154756_20060402_172840 SCI_LK1_AXVIEC20060320_050939_20060319_172644_20060402_190648 SCI_LK1_AXVIEC20060321_034006_20060320_102353_20060403_120305 SCI LK1 AXVIEC20060321 035319 20060320 120211 20060403 134121 SCI_LK1_AXVIEC20060321_042601_20060320_133946_20060403_152045 SCI_LK1_AXVIEC20060321_043755_20060320_151913_20060403_165701 SCI_LK1_AXVIEC20060321_044651_20060320_165553_20060403_183425 SCI LK1 AXVIEC20060322 040604 20060321 095209 20060404 113254 SCI_LK1_AXVIEC20060322_041902_20060321_113136_20060404_131200 SCI_LK1_AXVIEC20060322_043306_20060321_131116_20060404_144834 SCI_LK1_AXVIEC20060322_044847_20060321_144730_20060404_162753 SCI_LK1_AXVIEC20060322_050107_20060321_162613_20060404_180557 SCI LK1 AXVIEC20060322 150028 20060321 070301 20060404 081147 SCI LK1 AXVIEC20060323 033905 20060322 105844 20060405 123922 SCI LK1 AXVIEC20060323 042616 20060322 141655 20060405 155357 SCI_LK1_AXVIEC20060323_044654_20060322_155130_20060405_173414 SCI_LK1_AXVIEC20060323_045754_20060322_173304_20060405_191158 SCI_LK1_AXVIEC20060323_093446_20060322_063021_20060405_074015 SCI_LK1_AXVIEC20060323_160741_20060323_055934_20060406_070805 SCI LK1 AXVIEC20060323 162545 20060323 070659 20060406 085043 SCI LK1 AXVIEC20060323 164316 20060323 102809 20060406 120932 SCI_LK1_AXVIEC20060324_040506_20060323_152343_20060406_170409 SCI LK1 AXVIEC20060324 042119 20060323 170214 20060406 184158 SCI_LK1_AXVIEC20060324_121541_20060323_120845_20060406_134817 SCI_LK1_AXVIEC20060325_041302_20060324_070717_20060407_081655 SCI_LK1_AXVIEC20060325_043231_20060324_081551_20060407_095841 SCI LK1 AXVIEC20060325 044851 20060324 105742 20060407 113722 SCI LK1 AXVIEC20060325 050803 20060324 113605 20060407 131713 SCI LK1 AXVIEC20060325 053114 20060324 131628 20060407 145456 SCI_LK1_AXVIEC20060325_055423_20060324_145307_20060407_163022 SCI_LK1_AXVIEC20060325_061746_20060324_162838_20060407_180830 SCI LK1 AXVIEC20060326 062236 20060325 092538 20060408 110627

page 62 of 65

SCI LK1 AXVIEC20060326 065027 20060325 110518 20060408 124509 SCI LK1 AXVIEC20060326 071443 20060325 124349 20060408 142439 SCI LK1 AXVIEC20060326 073402 20060325 142329 20060408 155913 SCI LK1 AXVIEC20060326 074638 20060325 155655 20060408 173954 SCI_LK1_AXVIEC20060326_161333_20060326_071332_20060409_085606 SCI_LK1_AXVIEC20060326_164011_20060326_085504_20060409_103444 SCI_LK1_AXVIEC20060327_062751_20060326_103335_20060409_121349 SCI LK1 AXVIEC20060327 063016 20060326 121301 20060409 135400 SCI_LK1_AXVIEC20060327_063511_20060326_135241_20060409_153105 SCI LK1 AXVIEC20060327 064314 20060326 152908 20060409 170934 SCI LK1 AXVIEC20060327 064755 20060326 170740 20060409 184601 SCI LK1 AXVIEC20060327 154233 20060327 071351 20060410 082236 SCI_LK1_AXVIEC20060327_155916_20060327_082116_20060410_100509 SCI_LK1_AXVIEC20060328_055758_20060327_132058_20060410_150021 SCI LK1 AXVIEC20060328 062314 20060327 145820 20060410 163846 SCI_LK1_AXVIEC20060328_065523_20060327_150025_20060410_163846 SCI_LK1_AXVIEC20060328_071746_20060327_163555_20060410_181555 SCI_LK1_AXVIEC20060329_094915_20060328_160412_20060411_174442 SCI_LK1_AXVIEC20060329_100151_20060328_174256_20060411_192401 SCI_LK1_AXVIEC20060330_062734_20060329_103900_20060412_122035 SCI_LK1_AXVIEC20060330_065629_20060329_121935_20060412_135923 SCI_LK1_AXVIEC20060330_071210_20060329_135806_20060412_153702 SCI LK1 AXVIEC20060330 072454 20060329 153433 20060412 171310 SCI_LK1_AXVIEC20060330_073356_20060329_061025_20060412_072028 SCI_LK1_AXVIEC20060330_073500_20060329_090029_20060412_104003 SCI LK1 AXVIEC20060330 073835 20060329 171112 20060412 185246 SCI LK1 AXVIEC20060330 145801 20060330 053841 20060413 072114 SCI_LK1_AXVIEC20060331_061118_20060330_100921_20060413_114817 SCI_LK1_AXVIEC20060331_063206_20060330_114656_20060413_132818 SCI_LK1_AXVIEC20060331_065545_20060330_132719_20060413_150620 SCI_LK1_AXVIEC20060331_071142_20060330_150454_20060413_164402 SCI LK1 AXVIEC20060331 072815 20060330 164121 20060413 182046 SCI LK1 AXVIEC20060331 074510 20060329 072049 20060412 090025 SCI LK1 AXVIEC20060331 074545 20060330 082546 20060413 101020 SCI_LK1_AXVIEC20060331_213144_20060331_064734_20060414_075638 SCI_LK1_AXVIEC20060401_084120_20060331_125537_20060414_143226 SCI_LK1_AXVIEC20060401_091836_20060331_143012_20060414_161115 SCI_LK1_AXVIEC20060401_093303_20060331_160843_20060414_174945 SCI LK1 AXVIEC20060401 094049 20060331 174822 20060414 192852 SCI LK1 AXVIEC20060404 151339 20060401 061552 20060415 072546 SCI_LK1_AXVIEC20060404_151917_20060401_072629_20060415_090552 SCI LK1 AXVIEC20060404 152617 20060401 090556 20060415 104654 SCI_LK1_AXVIEC20060404_153901_20060401_122354_20060415_140447 SCI_LK1_AXVIEC20060404_154047_20060401_140334_20060415_154015 SCI_LK1_AXVIEC20060405_120727_20060404_123031_20060418_140855 SCI LK1 AXVIEC20060405 120727 20060404 154433 20060418 172541 SCI_LK1_AXVIEC20060405_120744_20060404_172358_20060418_190419 SCI LK1 AXVIEC20060406 061109 20060404 105051 20060418 123136 SCI_LK1_AXVIEC20060406_061641_20060404_113233_20060418_115506 SCI_LK1_AXVIEC20060406_062540_20060404_115426_20060418_121703 SCI LK1 AXVIEC20060406 063854 20060405 073313 20060419 083913

page 63 of 65

SCI LK1 AXVIEC20060406 065414 20060405 083834 20060419 102218 SCI LK1 AXVIEC20060406 071227 20060405 102113 20060419 120033 SCI LK1 AXVIEC20060406 072322 20060405 115849 20060419 133837 SCI LK1 AXVIEC20060406 073513 20060405 151251 20060419 165355 SCI_LK1_AXVIEC20060406_135127_20060404_062120_20060418_073159 SCI_LK1_AXVIEC20060406_135205_20060404_140658_20060418_154646 SCI_LK1_AXVIEC20060406_135726_20060401_153756_20060415_171853 SCI LK1 AXVIEC20060406 135910 20060401 171735 20060415 185909 SCI LK1 AXVIEC20060406 140212 20060402 072758 20060416 083341 SCI_LK1_AXVIEC20060406_140243_20060402_083305_20060416_101531 SCI LK1 AXVIEC20060406 140334 20060402 101654 20060416 115316 SCI LK1 AXVIEC20060406 140402 20060402 115320 20060416 133322 SCI_LK1_AXVIEC20060406_140853_20060402_133152_20060416_151133 SCI_LK1_AXVIEC20060406_141156_20060402_151023_20060416_164728 SCI LK1 AXVIEC20060406 141156 20060402 164458 20060416 182541 SCI_LK1_AXVIEC20060406_141349_20060403_065302_20060417_080212 SCI_LK1_AXVIEC20060406_141625_20060403_080123_20060417_094533 SCI_LK1_AXVIEC20060406_141940_20060403_130213_20060417_143828 SCI_LK1_AXVIEC20060406_141941_20060403_094416_20060417_112433 SCI_LK1_AXVIEC20060406_141943_20060403_112342_20060417_130303 SCI_LK1_AXVIEC20060406_141945_20060403_143527_20060417_161727 SCI_LK1_AXVIEC20060410_025024_20060409_162316_20060423_180357 SCI LK1 AXVIEC20060411 034210 20060410 110053 20060424 124208 SCI_LK1_AXVIEC20060411_035026_20060410_124020_20060424_141949 SCI_LK1_AXVIEC20060411_035636_20060410_141646_20060424_155511 SCI_LK1_AXVIEC20060411_040543_20060410_155326_20060424_173535 SCI LK1 AXVIEC20060412 031658 20060410 142055 20060424 155417 SCI_LK1_AXVIEC20060412_032539_20060411_060239_20060425_071133 SCI_LK1_AXVIEC20060412_033317_20060411_071100_20060425_085259 SCI_LK1_AXVIEC20060412_034123_20060411_085135_20060425_103330 SCI_LK1_AXVIEC20060412_035234_20060411_103211_20060425_121213 SCI LK1 AXVIEC20060412 040250 20060411 121042 20060425 135030 SCI LK1 AXVIEC20060412 041048 20060411 134913 20060425 152619 SCI LK1 AXVIEC20060412 042019 20060411 152335 20060425 170438 SCI_LK1_AXVIEC20060412_042806_20060411_170315_20060425_184304 SCI_LK1_AXVIEC20060413_035832_20060412_113900_20060426_131857 SCI_LK1_AXVIEC20060413_035849_20060412_131731_20060426_145748 SCI_LK1_AXVIEC20060413_040611_20060412_145602_20060426_163255 SCI LK1 AXVIEC20060413 082254 20060412 145806 20060426 163255 SCI LK1 AXVIEC20060413 083200 20060412 163133 20060426 181255 SCI_LK1_AXVIEC20060413_083204_20060412_081857_20060426_100141 SCI LK1 AXVIEC20060414 081657 20060413 063842 20060427 074726 SCI_LK1_AXVIEC20060414_081804_20060413_074619_20060427_093033 SCI_LK1_AXVIEC20060415_034659_20060414_135455_20060428_153334 SCI_LK1_AXVIEC20060415_035210_20060414_153109_20060428_171008 SCI LK1 AXVIEC20060415 085916 20060414 170838 20060428 185026 SCI_LK1_AXVIEC20060416_033652_20060415_114537_20060429_132531 SCI LK1 AXVIEC20060416 034325 20060415 132408 20060429 150236 SCI_LK1_AXVIEC20060416_034921_20060415_150131_20060429_163910 SCI_LK1_AXVIEC20060416_082246_20060415_163702_20060429_181855 SCI LK1 AXVIEC20060417 085834 20060415 150240 20060429 163910

page 64 of 65

SCI LK1 AXVIEC20060417 090450 20060416 064424 20060430 075341 SCI LK1 AXVIEC20060417 091340 20060416 075244 20060430 093535 SCI LK1 AXVIEC20060417 092828 20060416 093416 20060430 111441 SCI LK1 AXVIEC20060417 093615 20060416 111355 20060430 125411 SCI_LK1_AXVIEC20060417_094515_20060416_125335_20060430_143223 SCI_LK1_AXVIEC20060417_095513_20060416_143058_20060430_161050 SCI_LK1_AXVIEC20060417_100310_20060416_160833_20060430_174641 SCI LK1 AXVIEC20060421 043536 20060420 154316 20060504 172335 SCI LK1 AXVIEC20060421 044456 20060420 172140 20060504 190002 SCI LK1 AXVIEC20060421 142018 20060420 114317 20060504 122754 SCI LK1 AXVIEC20060421 142159 20060420 122710 20060504 140704 SCI LK1 AXVIEC20060422 025612 20060421 065655 20060505 083948 SCI_LK1_AXVIEC20060422_030250_20060421_083826_20060505_101851 SCI LK1 AXVIEC20060422 030959 20060421 101806 20060505 115739 SCI LK1 AXVIEC20060422 031616 20060421 115637 20060505 133612 SCI_LK1_AXVIEC20060422_032226_20060421_133508_20060505_151346 SCI LK1 AXVIEC20060422 032946 20060421 151135 20060505 165223 SCI LK1 AXVIEC20060422 033729 20060421 165114 20060505 182834 SCI_LK1_AXVIEC20060423_040218_20060422_094528_20060506_112412 SCI_LK1_AXVIEC20060423_041247_20060422_112251_20060506_130453 SCI_LK1_AXVIEC20060423_042504_20060422_130326_20060506_144432 SCI_LK1_AXVIEC20060423_043531_20060422_144253_20060506_162151 SCI LK1 AXVIEC20060425 071155 20060423 091551 20060507 105522 SCI_LK1_AXVIEC20060425_072045_20060423_105409_20060507_123336 SCI_LK1_AXVIEC20060425_075659_20060423_123253_20060507_141306 SCI LK1 AXVIEC20060425 075939 20060423 141220 20060507 155125 SCI LK1 AXVIEC20060425 080017 20060423 154955 20060507 172848 SCI_LK1_AXVIEC20060425_084149_20060423_172656_20060507_190617 SCI_LK1_AXVIEC20060425_091014_20060424_070116_20060508_084501 SCI_LK1_AXVIEC20060425_091014_20060424_084409_20060508_102502 SCI_LK1_AXVIEC20060425_091103_20060424_102432_20060508_120340 SCI LK1 AXVIEC20060425 091306 20060424 120207 20060508 134137 SCI_LK1_AXVIEC20060425_091505_20060424_151909_20060508_165745 SCI LK1 AXVIEC20060426 045133 20060425 095250 20060509 113130 SCI_LK1_AXVIEC20060426_050345_20060425_113025_20060509_131057 SCI_LK1_AXVIEC20060426_051443_20060425_130952_20060509_145004 SCI LK1_AXVIEC20060426_052159_20060425_144836_20060509_162424 SCI_LK1_AXVIEC20060426_082239_20060425_070150_20060509_081200 SCI LK1 AXVIEC20060426 084227 20060424 165632 20060508 183556 SCI LK1 AXVIEC20060426 084805 20060425 162150 20060509 180513 SCI_LK1_AXVIEC20060426_085511_20060425_180312_20060509_194301 SCI LK1 AXVIEC20060427 041231 20060426 092108 20060510 110001 SCI_LK1_AXVIEC20060427_042134_20060426_105844_20060510_124039 SCI_LK1_AXVIEC20060427_042938_20060426_123919_20060510_141832 SCI_LK1_AXVIEC20060427_043830_20060426_141750_20060510_155627 SCI LK1 AXVIEC20060427 044711 20060426 155417 20060510 173220 SCI_LK1_AXVIEC20060427_045833_20060426_172939_20060510_191200 SCI LK1 AXVIEC20060427 074001 20060426 063104 20060510 074032 SCI_LK1_AXVIEC20060428_041731_20060427_085035_20060511_102908 SCI_LK1_AXVIEC20060428_043131_20060427_102811_20060511_120919 SCI LK1 AXVIEC20060428 044059 20060427 120834 20060511 134805

page 65 of 65

SCI LK1 AXVIEC20060428 045346 20060427 134717 20060511 152613 SCI LK1 AXVIEC20060428 050452 20060427 152440 20060511 170102 SCI LK1 AXVIEC20060428 083300 20060427 055922 20060511 070942 SCI LK1 AXVIEC20060428 085649 20060427 165902 20060511 184058 SCI_LK1_AXVIEC20060429_042308_20060428_145354_20060512_163307 SCI_LK1_AXVIEC20060429_082829_20060428_070925_20060512_081707 SCI LK1 AXVIEC20060429 083940 20060428 081541 20060512 095940 SCI LK1 AXVIEC20060429 084942 20060428 095834 20060512 113648 SCI LK1 AXVIEC20060429 090405 20060428 163034 20060512 180912 SCI LK1 AXVIEC20060430 040950 20060429 092543 20060513 110655 SCI LK1 AXVIEC20060430 042124 20060429 110510 20060513 124617 SCI LK1 AXVIEC20060501 043608 20060429 124450 20060513 142452 SCI_LK1_AXVIEC20060501_044712_20060429_142417_20060513_160117 SCI LK1_AXVIEC20060501_045704_20060429_155852_20060513_173720 SCI LK1 AXVIEC20060501 053321 20060430 060357 20060514 071418 SCI_LK1_AXVIEC20060501_054407_20060430_071326_20060514_085515 SCI LK1 AXVIEC20060501 055706 20060430 085402 20060514 103451 SCI_LK1_AXVIEC20060501_060911_20060430_103329_20060514_121341 SCI_LK1_AXVIEC20060501_062222_20060430_121213_20060514_135404 SCI_LK1_AXVIEC20060501_063420_20060430_135236_20060514_152922 SCI_LK1_AXVIEC20060501_064432_20060430_152711_20060514_170650 SCI_LK1_AXVIEC20060501_065618_20060430_170423_20060514_184621