

esa

issue 1 revision 0 -

2003

page 1 of 60

document title/ titre du document

SCIAMACHY BI-MONTHLY Report: September - October 2005

Angelika Dehn prepared by/préparé par Checked by **Gareth Davies** reference/réference ENVI-SPPA-EOPG-TN-06-0001 issue/édition 1 0 revision/révision 11 Jan 2006 date of issue/date d'édition status/état Technical Note Document type/type de document Distribution/distribution

page 2 of 60

A P P R O V A L

Title titre	issue 1 issue	revision revision	0

author	A. Dehn,	SERCO,	Manfred	Gottwald,	SOST-DLR,	Stefan	Noel, date	11/01/2006
auteur	SOST-IFE						date	

approved by	T. Fehr ESA/ESRIN, D/EOP-GOQ	date 19/01/2006
approuvé by		date

CHANGE LOG

reason for change /raison du changement	issue/issue	revision/revision	date/ <i>date</i>
	I.		l I

CHANGE RECORD

Issue: 1 Revision: 0

reason for change/raison du changement	page(s)/page(s)	paragraph(s)/paragraph(s)

2005 - issue 1 revision

page 3 of 60

TABLE OF CONTENTS

1	INTRODUCTION	5
	1.1 Scope	
	1.2 References	
	1.3 Acronyms and Abbreviations	6
2	SUMMARY	8
3	INSTRUMENT CONFIGURATION AND PERFORMANCE	10
	3.1 In-Flight Status and Performance	
	3.1.1 Planned Operations and Measurements (SOST-DLR)	10
	3.1.2 Instrument Measurement Status (SOST-DLR)	
	3.1.3 Executed Operations and Measurements (SOST-DLR)	10
	3.1.4 Performance Monitoring - System (SOST-DLR)	12
	3.1.5 Performance Monitoring - Light Path (SOST-IFE)	
	3.1.5.1 Science Channel Averages	
	3.1.5.2 Spectral light path monitoring results	
	3.1.5.3 PMD monitoring results	
	3.1.6 Problem Report Status (DLR-BO)	
4	DATA AVAILABILITY STATISTICS	31
	4.1 Downlink/Acquisition Performance	
	4.2 Statistics on unconsolidated data (SCI_NL_0P, SCI_NL_1P)	
	4.3 Statistics on consolidated data	
	4.4 Statistics on reprocessed data	
5	LEVEL 1 PRODUCT QUALITY MONITORING	
	5.1 Processor Configuration	
	5.1.1 Version	
	5.1.2 Auxiliary Data Files	
	5.1.3 Spectral Performance	
	5.1.4 Radiometric Performance	
	5.1.5 Other Calibration Results	
	5.1.5.1 SMR analysis	
	5.1.5.2 LK1 analysis	
	5.1.6 Pointing Performance	
6	LEVEL 2 NRT PRODUCT QUALITY MONITORING	45

2005 - issue 1 revision

a

page 4 of 60

6.1 Pr	rocessor Configuration	
	Version	
6.1.2	Auxiliary Data Files	47
6.2 Og	3 consistency checking	47
	O ₂ consistency checking	
6.3.1	NO ₂ VCD map September 2005	47
6.3.2	NO ₂ VCD map October 2005	

7	LEVEL 2 OFFLINE PRODUCT QUALITY MONITORING	
7.1 Pr	ocessor Configuration	
7.1.1	•	
7.1.2	Auxiliary Data Files	
	Monitoring results	

8	VALIDATION ACTIVITIES AND RESULTS	49
8.		
	8.1.1 Summary of the ECMWF SCIAMACHY monthly report for September 2005	
	8.1.2 Summary of the ECMWF SCIAMACHY monthly report for October 2005	
8.	.2 Statistics from Inter comparison with External Data	

issue 1 revision 0 -

page 5 of 60

SCIAMACHY BI-MONTHLY REPORT SEPTEMBER -OCTOBER 2005

1 INTRODUCTION

The SCIAMACHY Bi-Monthly report documents the current status and recent changes to the SCIAMACHY instrument, its data processing chain, and its data products.

The Bi-Monthly Report (hereafter BMR) is composed of analysis results obtained by the Product Control Facility, combined with inputs received from the different groups working on SCIAMACHY operation, calibration, product validation and data quality.

The first part of the report is dedicated to Instrument Configuration and Performance. It is composed of contributions from SOST-DLR and SOST-IFE.

The remainder of the report is dedicated to Level 1 and Level 2 performance assessment and is generated by ESA/ESRIN DPQC with contributions from ESA/ESTEC PLSO and DLR-IMF.

The structure of the report will be in constant evolution through the ENVISAT mission, as experience with SCIAMACHY data and quality control grows.

1.1 Scope

The main objective of the BMR is to give, on a regular basis, the status of SCIAMACHY instrument performance, data acquisition, results of anomaly investigations, calibration activities and validation campaigns. The BMR is composed of the following six sections:

- Summary;
- Instrument Configuration and Performance;
- Data Availability Statistics;
- Level 1 Product Quality Monitoring;
- Level 2 Product Quality Monitoring;
- Validation Activities and Results.

1.2 References

 [1] 'Instrument Operation Manual', MA-SCIA-0000DO/01, Issue F R2, 16 Dec. 2004
 [2] 'ENVISAT-1 Products Specifications Volume 15: SCIAMACHY Products Specifications', PO-RS-MDA-GS-2009, Issue 3, Rev: J, Alberto Pellegrini

2005 - issue 1 revision

page 6 of 60

1.3 Acronyms and Abbreviations

ADC	Analogue to Digital Converter
ADF	Auxiliary Data File
ANX	Ascending Node Crossing
AOCS	Attitude and Orbit Control System
APSM	Aperture Stop Mechanism
ASM	Azimuth Scan Mechanism
ATC	Active Thermal Control
BMR	Bi-Monthly Report
CA	Corrective Action
CCA	Communication Area
CTI	Configurable Transfer Item
DAC	Digital Analogue Converter
DLR-IMF	Deutsches Zentrum fuer Luft- und Raumfahrt
D-PAC	Processing and Archiving Centre in Germany
DPQC	Data Processing Quality Control
ESM	Elevation Scan Mechanism
FPN	Fixed Pattern Noise
HK	Housekeeping
ICE	Instrument Control Electronics
ICL	Instrument Control Unit
IECF	Instrument Engineering and Calibration Facilities
IOM	Instrument Operation Manual
LK1	Leakage Current Auxiliary File (SCI_LK1_AX)
LOS	Line of Sight
MCMD	Macro Command
MR	Monthly Report
NCWM	Nadir Calibration Window Mechanism
NDFM	Neutral Density Filter Mechanism
NNDEC	Non-nominal Decontamination
NRT	Near Real Time
OBM	Optical Bench Module
OCR	Operations Change Request
OSDF	Orbit Sequence Definition File
PCF	Product Control Facility
PDHS	Payload Data Handling Station (PDS)
PDHS-E	Payload Data Handling Station – ESRIN
PDHS-K	Payload Data Handling Station – ESKIN
PDS	Payload Data Segment
PE1	Pixel to Pixel/ Etalon Auxiliary File (SCI PE1 AX)
PLSO	Payload Switch OFF
PMD	Polarization Measurement Device
QUADAS	Quality Analysis of Data from Atmospheric Sounders
SAA	South Atlantic Anomaly
<i>G1</i> 1 <i>1</i> 1	South / Manue / Montary

C CSA

issue 1 revision 0 -

page 7 of 60

SCIAMACHY	Scanning Imaging Absorption Spectrometer for Atmospheric
	Chartography
SEU	Single Event Upset
SLS	Spectral Line Source
SMR	Sun Mean Reference
SOST	SCIAMACHY Operations Support Team
SP1	Spectral Calibration Auxiliary File (SCI_SP1_AX)
SU1	Sun Reference Auxiliary File (SCI_SU1_AX)
SZA	Sun Zenith Angle
TC	Thermal Control
TCFoV	Total Clear Field of View
TOA	Top of Atmosphere
TRUE	Tangent height Retrieval by UV-B Exploitation
VCD	Vertical Column Density
WLS	White Light Source

page 8 of 60

2 SUMMARY

- During the reported period SCIAMACHY measurements were nominal with respect to planning.
- Monthly Calibration was executed during Orbits
 - ➤ 18561-18565 (17/18-Sep-2005)
 - ➤ 18976-18980 (16/17-Oct-2005)
- Moon occultations were not executed as the moon was rising on the dayside.
- No OCR has been implemented during September October 2005.
- No TC adjustment was required.
- Due to a planned Orbit Control Manoeuvre, SCIAMACHY was in measurement/idle mode during Orbits
 - ▶ 18409 18415 (07-Sep-2005)
- Light Path monitoring:
 - Small degradation in UV continues (channel 1 2%, channel 2 1%); sun over ESM diffuser degradation smaller than for other light paths indication that ESM diffuser degrades less than ESM mirror
 - Overall degradation in channel 3 continues, but is smaller than for channels 1 and 2
 - Channels 4-5 radiometricly stable
 - Channel 6 throughput loss due to icing
 - > Channel 7 throughput rather stable over time interval
 - Channel 8 throughput is reduced by about 20%, the transmission is stable at this level
- PMD monitoring:
 - ▶ UV degradation visible in science channels is also visible in PMD 1 to 3
 - > PMD 4 and 7 show a large decrease in throughput which is currently unexplained.
 - > PMD 6 results still under investigation

page 9 of 60

- Spectral light path monitoring:
 - > UV degradation decreases with increasing wavelength

- Degradation is wavelength dependent (especially at channel edges)
- Solar activity variation visible (e.g Mg II Fraunhofer line)
- Channel degradation results generally are confirmed with spectral light path monitoring
- Downlink/acquisition problems resulted in corrupted L0 and L1b data products:
 > Orbits 18682-18687, 18697
- ADF generation was impacted by hardware failures during September
- SCIAMACHY Level 2 NRT ozone and AMF values are impacted by a wrong handling of the seasonal index 3, corresponding to the period 15 October 31 December 2005. This season index is handled correctly in the L2 offline product.

issue 1 revision 0 -

page 10 of 60

3 INSTRUMENT CONFIGURATION AND PERFORMANCE

3.1 In-Flight Status and Performance

Detailed operations, planning and instrument status information can be found on the website of the *SCIAMACHY Operations Support (SOST)* under <u>http://atmos.caf.dlr.de/projects/scops/</u>. These pages are maintained on a daily basis and show the history and actual progress of the SCIAMACHY mission.

3.1.1 Planned Operations and Measurements (SOST-DLR)

The reporting period covers the orbits 18322 (ANX = 01-September-2005, 01:17:48.633) to 19194 (ANX = 31-October-2005, 23:19:57.974). One OSDF specified the planning baseline.

Or	Orbit ANX		Orbit		NX	OSDF
Start	Stop	Start	Stop	USDF		
18322	19194	01-Sep-2004 01:17:48.633	31-Oct-2005 23:19:57.974	MPL_OSD_SHVSH_20050714_010101_00000000_33110001_20050901_011750_20051101_010031		

Table 3-1: SCIAMACHY OSDF planning files from September – October 2005

All measurements were nominal, i.e. timelines executed on the dayside of the orbit limb/nadir sequences with wide swath settings. In-flight calibration and monitoring measurements occurred on daily, weekly and monthly timescales according to the mission scenarios. Monthly calibration was scheduled between orbits

- 18561-18565 (17/18-Sep-2005)
- 18976-18980 (16/17-Oct-2005)

The moon was in the limb TCFoV between orbits 18498-18578 (13-Sep-2005 until 18-Sep-2005) and 18916-19001 (12-Oct-2005 until 18-Oct-2005) but no occultations were executed since the moon was rising on the dayside.

No OCR has been implemented between September and October.

3.1.2 Instrument Measurement Status (SOST-DLR)

Final flight status for mission scenarios, states and timelines remained unchanged throughout the reporting period.

3.1.3 Executed Operations and Measurements (SOST-DLR)

Measurements

issue 1 revision 0 -

page 11 of 60

The OSDF planning files have been scheduled as requested. A short planned deviation occurred between orbits 18409-18415 (07-Sep-2005) when an orbit control manoeuvre was performed (see below).

Detector thermal adjustment

No TC adjustment was required. TC settings throughout the reporting period were

- DAC1 = 0.53 W
- DAC2 = 0.70 W
- DAC3 = 0.00 W

APSM/NDFM health checks & PMD ADC cal

In the reporting period 1 APSM/NDFM health check and 2 PMD ADC calibrations were executed. All showed nominal results.

APSM/NDFM			PMD ADC	
Orbit	ANX	Result	Orbit	ANX
18711	28-SEP-2005 06:59:11	ok	18712	28-SEP-2005 08:35:42
n.a.	n.a.	n.a.	19112	26-OCT-2005 07:18:17

Table 3-2: APSM/NDFM health check and PMD ADC calibration

Anomalies

No anomalies had occurred.

Instrument unavailability

The instrument was available throughout the reporting period except for the short period with an orbit control manoeuvre on 07-Sep-2005 when a planned activity transferred SCIAMACHY to MEASUREMENT/IDLE for about 6 orbits.

Unavailability					
Or	Orbit UTC		Event	Remark	
Start	Stop	Start	Stop		
18409	18415	07-Sep-2005 03:24:52	07-Sep-2005 14:37:25	transfer to MEASUREMENT/IDLE	OCM

Table 3-3: Instrument unavailabilities

2002 issue 1 revision 0 -

page 12 of 60

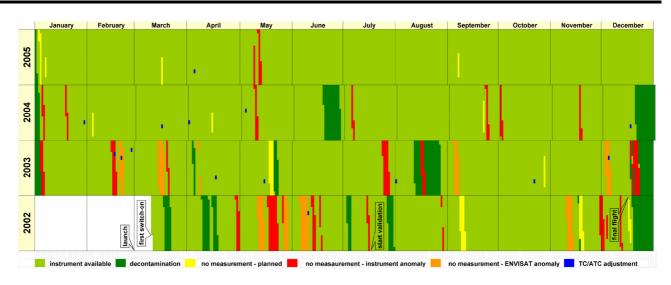


Fig. 3-1: Current instrument availability status including the reporting period

3.1.4 Performance Monitoring - System (SOST-DLR)

Detector temperatures

Detector temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits. For each detector the average temperatures per orbit are determined from HK telemetry parameters. Fig. 3-2 displays the temperatures of all 8 detectors. Colour coding is as on the operational monitoring website, i.e. data from orbits with HK telemetry coverage > 90% are shown in red, for < 90% in green. Minimum/maximum values per orbit are indicated as vertical bars. The temperature limits of each detector are shown as horizontal lines.

No temperature violations occurred.

OBM temperatures

OBM temperatures are monitored according to the requirements of the IOM [1]. It requests to ensure that the average temperature per orbit remains within the specified limits. The average OBM temperature per orbit is determined from specific HK telemetry parameters. In addition power readings for the ATC heaters are monitored. Temperatures and ATC heater powers are given in Fig. 3-3 and 3-4. Colour coding is as in Fig. 3-2.

OBM temperatures and ATC heater powers remained within limits.

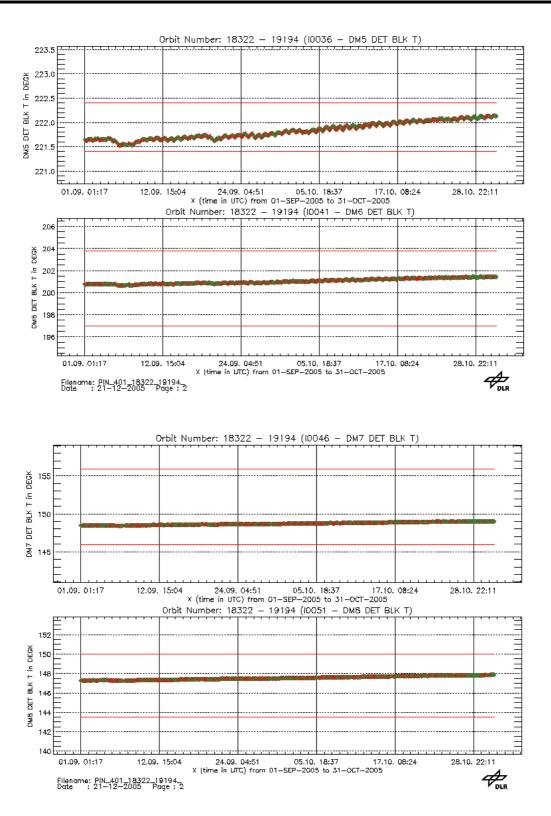
PMD ADC status

The status of the PMD ADC is monitored according to the requirements of the IOM [1]. It requests to ensure that no glitches occur caused by an SEU.

No PMD ADC glitches have been detected.

page 13 of 60

Orbit Number: 18322 - 19194 (10016 - DM1 DET BLK T) 214 212 DET BLK T in DEGK 210 208 206 N 204 202 F -01.09. 01:17 15:04 24.09, 04:51 05.10, 18:37 17.10, 08:24 X (time in UTC) from 01-SEP-2005 to 31-OCT-2005 Orbit Number: 18322 - 19194 (10021 - DM2 DET BLK T) 12.09. 15:04 28.10. 22:11 212 ×031 210 208 206 204 204 202 24.09. 04:51 05.10. 18:37 17.10. 08:24 × (time in UTC) from 01-SEP-2005 to 31-0CT-2005 28.10. 22:11 01.09. 01:17 12.09. 15:04 Filename: PIN_401_18322_19194_ Date : 21-12-2005 Page : 1 Orbit Number: 18322 - 19194 (10026 - DM3 DET BLK T) 230 228 1930 226 1970 224 2224 2222 220 218 24.09. 04:51 05.10. 18:37 17.10. 08:24 × (time in UTC) from 01-SEP-2005 to 31-OCT-2005 01.09. 01:17 12.09. 15:04 28,10, 22:11 Orbit Number: 18322 - 19194 (10031 - DM4 DET BLK T) 225.5 × 225.0 224.5 ↓ × 224.0 ↓ 223.5 ↓ 224.0 4 223.0 222.5 E 24.09. 04:51 05.10. 18:37 17.10. 08:24 X (time in UTC) from 01–SEP–2005 to 31–OCT–2005 01.09. 01:17 12.09, 15:04 28.10, 22:11 Filename: PIN_401_18322_19194_ Date : 21-12-2005 Page : 1


ife

esa

issue 1 revision 0 -

page 14 of 60

ife

esa

Fig. 3-2: Detector temperatures

یںںے - issue 1 revision 0

page 15 of 60

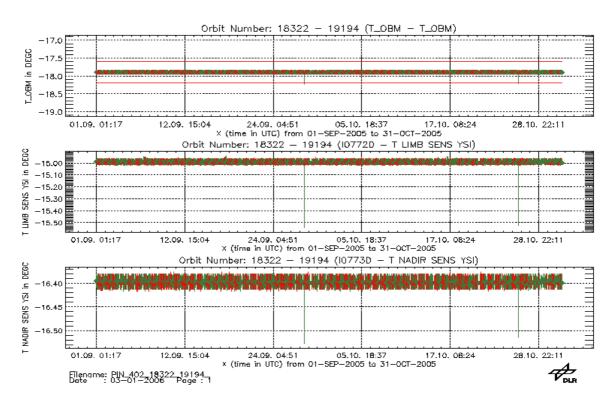


Fig. 3-3: OBM temperatures (top: derived OBM, middle: limb sensor, bottom: nadir sensor)

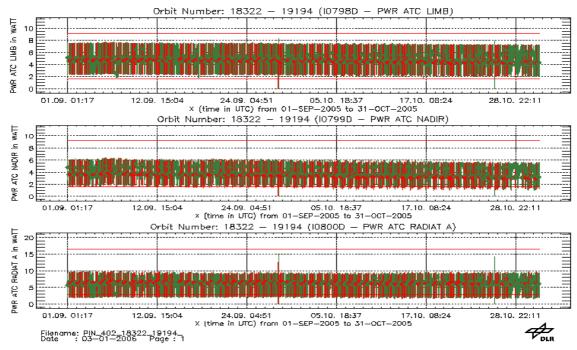


Fig. 3-4: ATC heater power (top: ATC limb, middle: ATC nadir, bottom: ATC Rad A)

LLI status

Life Limited Items are monitored based on analysis of the

- OSDF: This yields a predicted LLI usage.
- Report format: This counts the actual LLI switches or used LLI cycles. No WLS/SLS burning times can be derived thereof.

In addition, the in-flight usage of the cryogenic heat pipe is recorded. This subsystem has a limited number of cycles. Each decontamination increases the accumulated number of cycles by 1.

At the end of the reporting period the fractional usage of the LLI relative to the allowed in-flight budget was

- NDFM: 0.50
- APSM: 0.46
- NCWM (sub-solar port): 0.53
- WLS (switches): 0.11
- WLS (burning time): 0.21
- SLS (switches): 0.03
- SLS (burning time): 0.01

How the relative LLI usage has accumulated since launch can be seen in fig. 3-5. 'EOL' assumes a total mission lifetime of 0.5 years of Commissioning Phase and 4.5 years of routine operations.

SCIAMACHY Bi-M 2003 issue 1 revision 0 page 17 of 60 ÷ LLI (In-flight used versus In-flight Budget) NDFM NCWM WLS (switches) WLS (sec) SLS (switches) APSM SLS (sec) Cryo Heatpipe 100 90 estimated EOL 80 70 Relative Usage (%) 60 50 40 30 20 10 0 2000 4000 6000 8000 14000 16000 20000 22000 0 10000 12000 18000

Fig. 3-5: Relative usage of LLIs. 'EOL' is derived for the currently specified mission lifetime.

Orbit

The number of cryogenic heatpipe cycles did not increased (no decontamination). The budget used remained at 38% of the allowed in-flight budget.

Time reference

The times quoted in all planning files refer to the reference orbit. Since the actual orbit differs from the reference orbit (e.g. orbit drift), the times given w.r.t. the reference orbit also do not reflect exactly the actual absolute times of events along the orbit (e.g. ANX, sunrise, sub-solar, moonrise, eclipse). The requirements for orbit maintenance may result in time differences of usually $\leq \pm 10$ sec. In some cases this value may even reach ± 1 min, however.

SOST monitors how the reference time deviates from the actual time. This is done by using the predicted time which comes very close to the actual = restituted time. If the predicted times are delayed w.r.t. the reference orbit, then the difference *predicted* – *reference time* is > 0 sec; in the other case it is < 0 sec.

Fig. 3-6 displays the time difference *predicted – reference*. Orbit manouevres cause distinct discontinuities.

Time reference is not a critical issue with respect to quality monitoring.

page 18 of 60

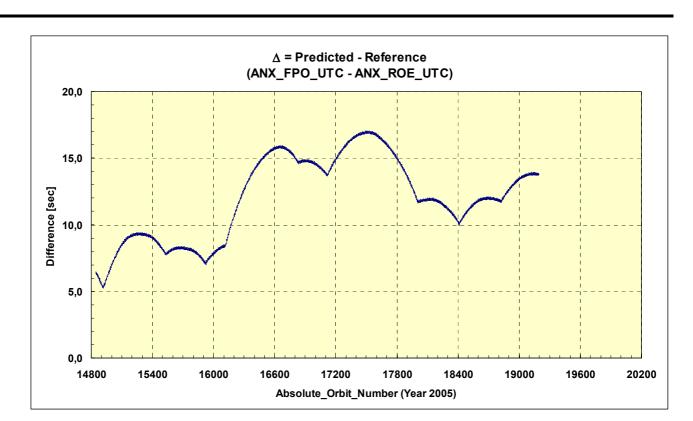


Fig. 3-6: Time difference between predicted and reference time.

3.1.5 Performance Monitoring - Light Path (SOST-IFE)

3.1.5.1 Science Channel Averages

One part of the SOST long-term monitoring activities is the trend analysis of measurements with the internal White Light Source (WLS) and of observations of the unobscured Sun above the atmosphere. In order to monitor the different SCIAMACHY light paths solar measurements are taken in various viewing geometries: In limb/occultation geometry (via ASM and ESM mirrors), in nadir geometry (via the ESM mirror through the subsolar port), and via the so-called calibration light path involving the ASM mirror and the ESM diffuser.

SCIAMACHY long-term monitoring comprises a regular analysis of these measurements.

The plots displayed in Fig. 3.7 show results of these monitoring activities for the time interval September to October 2005.

All measured signals have been averaged over the entire channel and then divided by the corresponding measurement at a reference time (currently 2 August 2002, at about orbit 2200), yielding an effective instrument throughput for the different light paths.

۲۰۵۵ کریں issue 1 revision 0 -

page 19 of 60

The timing of subsolar measurements before 30 November 2002 (about orbit 3922) did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. Therefore all subsolar measurements after 30 November 2002 have been referred to orbit 4519 (10 January 2003, just after a long decontamination phase).

Note that measurements performed during times of reduced instrument performance (e.g. switch-offs or decontamination periods) have been omitted.

The results presented in Fig. 3.7 are based on the analysis of Level 0 data, which have been corrected for dead/bad pixels, dark current (fixed value from August 2002), scan angle dependencies, quantum efficiency changes, and the seasonally varying distance to the Sun. Additional calibration steps have not been performed, like for example a straylight correction. Therefore, variations smaller than about 1% require careful investigation.

The light path monitoring results presented in this section may be regarded as a first step towards spectrally resolved monitoring factors (m-factors) which will be produced based on Level 1b data.

Daily updated light path monitoring results can be found on the SOST or IUP web site (<u>http://www.iup.physik.uni-bremen.de/sciamachy/LTM/LTM.html</u>).

2003 issue 1 revision 0 -

AS

page 20 of 60

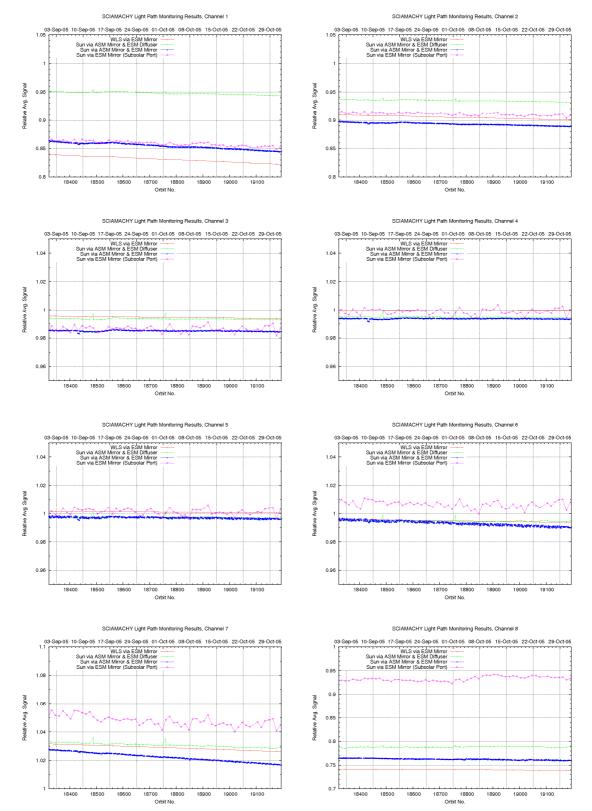


Fig. 3.7: Light path monitoring results September 2005 to October 2005.

בטטכ - issue 1 revision 0

page 21 of 60

The following specific features can be identified from the light path monitoring results during the time interval of this report:

- The degradation in the UV (channels 1 & 2) increases. Currently, the throughput loss for all light paths involving the ESM mirror is about 2% (for channel 1), now reaching levels below 80%, and almost 1% (for channel 2) within the shown two months. The degradation of the calibration light path which involves the ESM diffuser instead of the ESM mirror is still smaller than for the other light paths, indicating that the ESM diffuser degrades less than the ESM mirror.
- The overall degradation of channel 3 also continues, but it is still much less than in channels 1 and 2.
- Channels 4 and 5 remain stable.
- The throughput loss in channel 6 is not easily accessible from the bi-monthly plot because of the overlaid seasonal variation of the signal which has not been completely corrected out.

However, the long-term plots (accessible via the SOST web site) indicated that some of the observed throughput loss may be attributed to degradation, possibly caused by icing.

Note that there has not been a decontamination since January 2005, therefore even small icing effects may now become visible.

- The throughput of channel 7 still decreases, but this is almost negligible compared to the formerly observed throughput losses. Seasonal effects may also not be excluded here.
- Channel 8 transmission remains stable at about 75-80% (depending on light path). The higher throughput for the subsolar light path is most likely caused by the specific scan mode (fast sweep) analysed which causes a systematic offset.

3.1.5.2 Spectral light path monitoring results

Fig. 3.8 - 3.11 show results of spectral throughput monitoring performed by SOST-IFE for the different light paths (nadir, limb, calibration, and WLS). These results have been derived from Level 0 data analysed in a similar way as for the channel averaged throughput data (but of course without spectral averaging). Because the variation in spectral direction is very small within two month, Fig. 3.8 - 3.11 show the complete time series from 2 August 2002 to the end of October 2005.

Notes:

- Dates in the graphs refer to UTC noon (12:00).
- The data have been interpolated over dead/bad pixels (using the on-ground list).
- Data from times of reduced instrument performance (like decontaminations or instrument switch-offs) have not been considered. These times are masked out by grey vertical bars.

- All data have been transformed to a daily grid, involving averaging and interpolation.
- Ratios have been performed on a pixel axis without any spectral interpolations. The wavelength axis is just for illustration and gives only approximate values, assuming a linear relation between pixel number and wavelength.
- Depending on the availability of measurement data, features close to large data gaps (especially before and after a decontamination) may be caused by interpolation.
- WLS data have not been corrected for a potential degradation of the lamp. Only the intensity jump after the extended WLS usage in June 2003 has been removed.
- As mentioned before, the timing of subsolar measurements before 30 November 2002 did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. The timing has been corrected in the final flight settings. To take this change into account, all subsolar measurements have been referred to orbit 4519 (10 January 2003).

Therefore, subsolar results before 30 November 2002 are not reliable.

C CSa

issue 1 revision 0 -

page 23 of 60

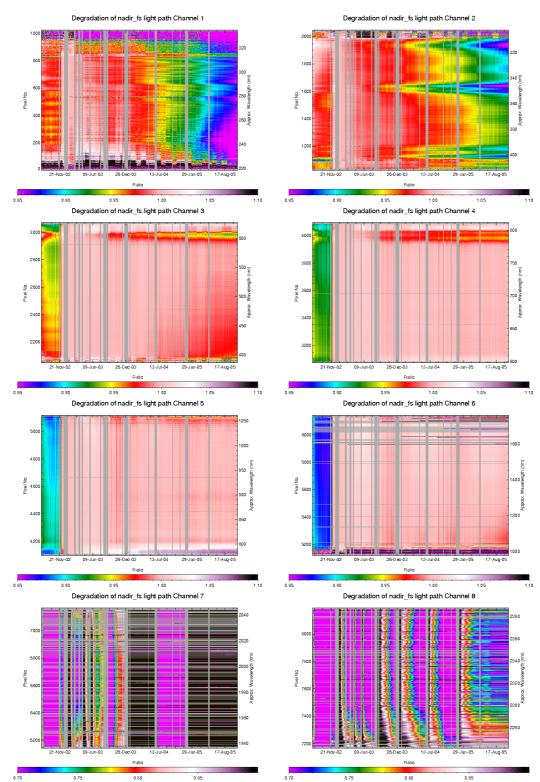


Fig. 3.8: Spectral light path monitoring results August 2002 to October 2005 (nadir light path)

2002 issue 1 revision 0

6

page 24 of 60

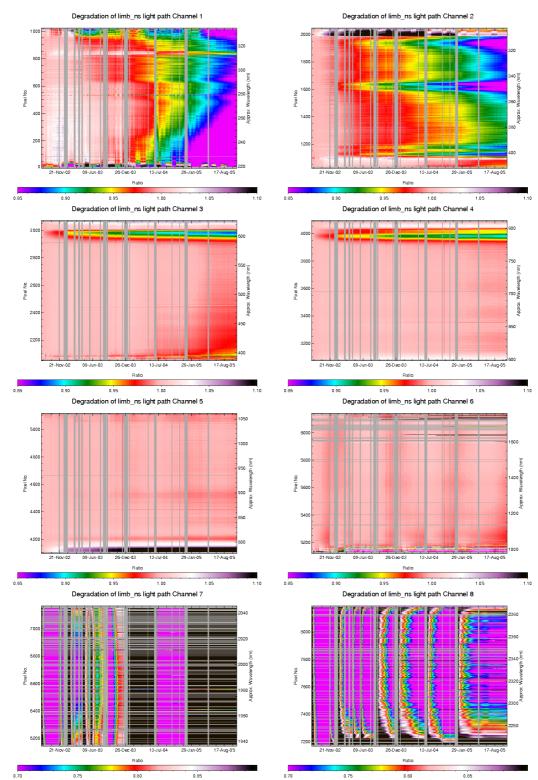


Fig. 3.9: Spectral light path monitoring results August 2002 to October 2005 (limb light path)

2003 issue 1 revision 0 -

69

page 25 of 60

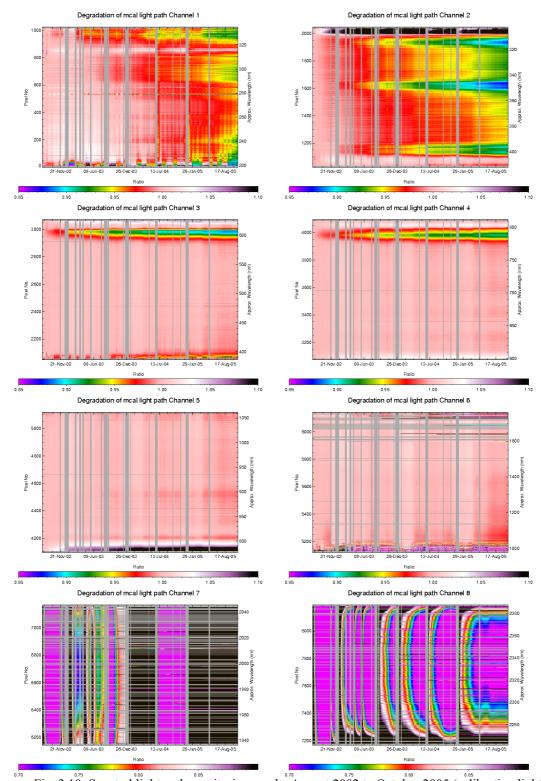


Fig. 3.10: Spectral light path monitoring results August 2002 to October 2005 (calibration light path)

בטטכ - issue 1 revision 0

69

page 26 of 60

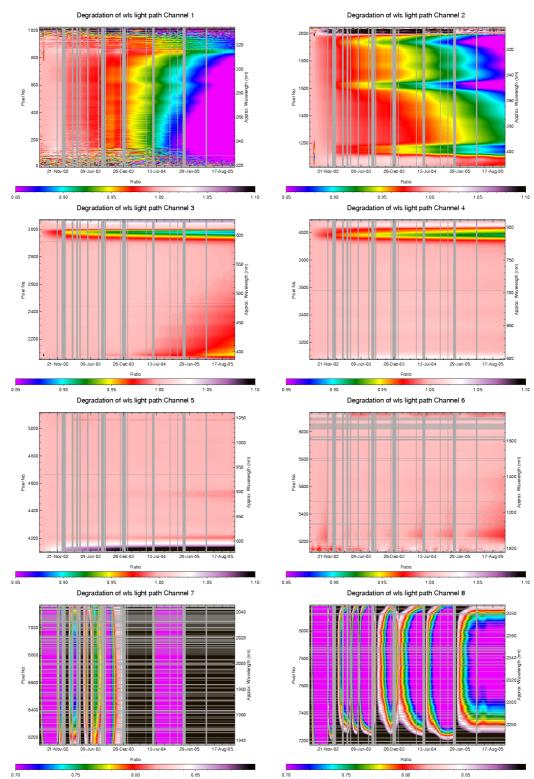


Fig. 3.11: Spectral light path monitoring results August 2002 to October 2005 (WLS light path)

page 27 of 60

The following main features can be identified in the spectral monitoring plots:

- As expected, the UV degradation generally decreases with increasing wavelength.
- The SCIAMACHY degradation strongly depends on wavelength and is largest at the channel edges and at spectral regions of high polarisation sensitivity (especially visible in channel 2, e.g. the peak around 350 nm).
- Also solar activity variation can be seen in the plots, e.g. the intensity change of the solar Mg II Fraunhofer line at about 280 nm.
- The degradation in channel 3 which was already indicated by the channel integrated results is much better visible in the spectrally resolved plots, where the propagation of this effect in time to higher wavelengths can be clearly identified.
- The difference in degradation between the diffuser light path and the other light paths is also visible in the plots; however, the spectral regions where degradation is strongest coincide quite well.
- The spectral plots also show that the stability for channels 4 and 5 observed in the integrated data is not present over the whole spectral range; also these channels show variations, but these are restricted to the overlap regions close to the channel edges.
- Channel 6 spectral results confirm the assumption of a slight degradation in this channel which is concentrated at the lower wavelength edge and independent of the overlaid remaining seasonal cycle.
- For channels 7 and 8 the spectral behaviour of the throughput loss is consistent with (broadband) ice absorption features. The effect of the decontaminations is of course also clearly visible in these channels.
- Especially channel 8 shows a large pixel dependence of the throughput variation caused by the different sensitivity of the pixels. This variation is much higher for light paths where the small aperture is involved (i.e. nadir (subsolar) and limb), indicating that the small aperture causes additional effects which need to be considered when applying these results to Earthshine data.
- In general, the WLS data are much smoother than the solar data.

3.1.5.3 PMD monitoring results

The SCIAMACHY PMDs are monitored in a similar way as the science channels, but of course no channel averaging is performed. However, the results presented here are based on the same measurements as the science channel results (but using the PMD low gain signal), and they have been normalized to the same reference times.

For the nadir light path it is not possible to use subsolar fast sweep measurements for PMD monitoring, because these show a too large scatter. This is probably caused by a combination of the very time-sensitive measurement type and scan mode and the fact that the PMDs measure a sampled signal, not an integrated one. Therefore, subsolar pointing measurements are used for monitoring of the PMD nadir light path, because the pointing signal is much more stable. Unfortunately, subsolar pointing measurements are only

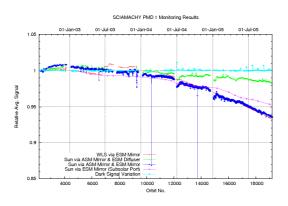
issue 1 revision 0 -

page 28 of 60

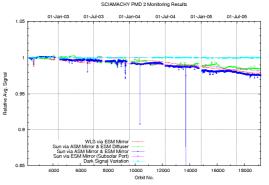
performed once per month, therefore the temporal sampling is much less than for the other light paths.

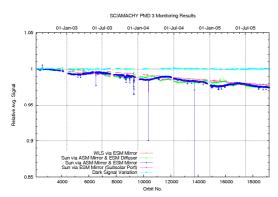
This reduced temporal sampling is also the reason that Fig. 3.12 shows the PMD throughput variation for the whole time period between 2 August 2002 and 31 October 2005 (instead of only the two month time interval of this report). Note that a constant dark signal for each of the PMDs has been assumed. To verify this assumption, Fig. 3.12 also shows the variation of the PMD dark signal over time, which is usually quite low.

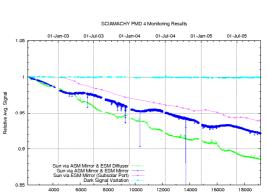
Note that PMD 7 results are most likely dominated by straylight and not reliable. They are only shown for completeness. Furthermore, WLS data are only available for PMD 1 to 3 because of saturation in the other PMD channels.

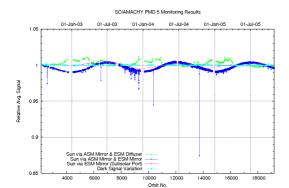

Considering the broadband character of the PMDs, the observed PMD throughput changes are (except for PMD 4 and 7) very similar to those of the science channels with the following features:

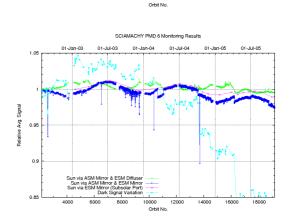
- The UV degradation apparent in the science channels is also visible in PMD 1 to 3.
- PMD 4 and 7 (which cover the same wavelength interval) show a considerably large decrease in throughput which is still unexplained (but may be related to the specific detector material).
- There are remaining seasonal variations in the data which could up to now not be corrected out. The amplitude of these seasonal variations increases with the wavelength range covered by the PMD. This issue is still unresolved.
- The PMD 6 dark signal shows a strange variation over time which is still under investigation.


page 29 of 60


2003




ife


esa

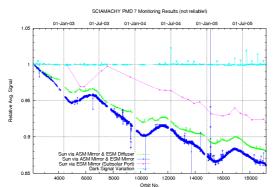


Fig. 3.12: PMD monitoring results August 2002 to October 2005

2002 - issue 1 revision 0

page 30 of 60

3.1.6 Problem Report Status (DLR-BO)

The problem report statistics is as follows (same status as during period July-August 2005):

• Total number of problem reports:	43
• Open problem reports:	5
• New problem reports during the reporting period:	0

issue 1 revision 0 -

page 31 of 60

4 DATA AVAILABILITY STATISTICS

4.1 Downlink/Acquisition Performance

ife

Problems are known for the Products listed in Tab. 4.1:

Ducalizat	Davi	Filewayee	
Product	Day	Filename	description
SCI_NL0P	26-Sep-2005	SCI_NL0PNPDK20050926_055311_000041702041_00091_18682_0642.N1	All products have
		SCI_NL0PNPDK20050926_070145_000061482041_00092_18683_0643.N1	a high number of
		SCI_NL0PNPDK20050926_084318_000060362041_00093_18684_0644.N1	ISP Errors; the
		SCI_NL0PNPDK20050926_102258_000060232041_00094_18685_0645.N1	data format is not
		SCI_NL0PNPDK20050926_120117_000059802041_00095_18686_0646.N1	correct
		SCI_NL0PNPDK20050926_134002_000058992041_00096_18687_0647.N1	
SCI_NL_0P	27-Sep-2005	SCI_NL0PNPDK20050927_070327_000041012041_00106_18697_0651.N1	Incorrect data
			format
SCI_NL_1P	27-Sep-2005	SCI_NL1PNPDK20050927_074150_000012402041_00150_18741_3838.N1	SENSING_START="30- SEP-2005 08:29:10.326292" SENSING_STOP="27- SEP-2005 08:02:31.397707" correct orbit should be 18697, start stop are wrong too
SCI_NL1P	27-Sep-2005	SCI_NL1PNPDK20050927_080235_000005622041_00150_18741_3768.N1	SENSING_START="30- SEP-2005 08:29:10.326292" SENSING_STOP="27- SEP-2005 08:11:57.921115"

Tab. 4-1: Products with data format errors

These occurrences of data corruptions are currently under investigation.

4.2 Statistics on unconsolidated data (SCI_NL_0P, SCI_NL_1P)

This paragraph reports the availability of NRT data on a monthly basis. The statistics are based on Level 0 data and Level 1 data inventoried in the ground segment. Unavailability periods due to instrument anomalies or Satellite switch-offs are excluded. The gaps considered are only interfile gaps.

page 32 of 60

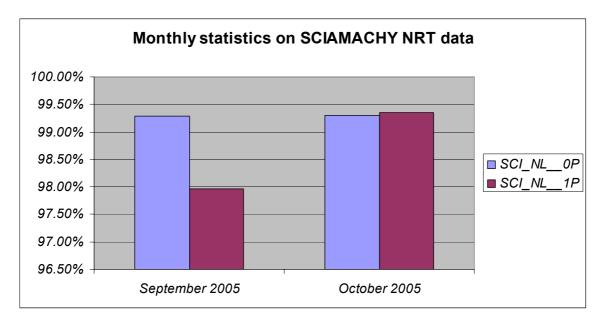


Fig. 4-1: Statistics on available unconsolidated Level 0 and Level 1 products

4.3 Statistics on consolidated data

In this paragraph statistics on consolidated data products L0 and L1 are presented.

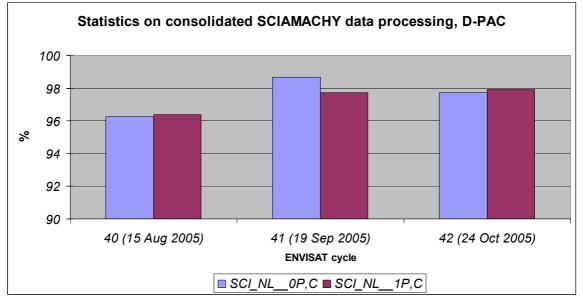


Fig. 4-2: Statistics on consolidated Level 0 and Level 1 products

4.4 Statistics on reprocessed data

Information about statistics on SCIAMACHY reprocessed data is made available by D-PAC.

page 33 of 60

Products from the time interval July 2002 to May 2004 (corresponding to cycles 7 -26, each cycle consisting of 501 orbits) are being reprocessed with IPF version 5.04 on consolidated L0/L1 data using the re-processed Auxiliary files (LK1, SU1, SP1, PE1). Data after that time interval have already been processed operationally with IPF 5.04 version and Auxiliary files had been processed operationally since then (the last status for the statistics in Fig. 4-3 is from 10/01/2006).

Data sets that lie in non-nominal decontamination periods are not re-processed to L2 products as the science data are not reliable.

It may occur that the availability of L1b products is slightly higher than L0 (e.g. cycle 17). This could be due to a multiple processing for some orbits. An anomaly report was opened to investigate the reason. As the analysis is ongoing, the statistics shown in Fig. 4-3 are not yet updated respectively to the last BMR. The reprocessing in general, however, has been finished.

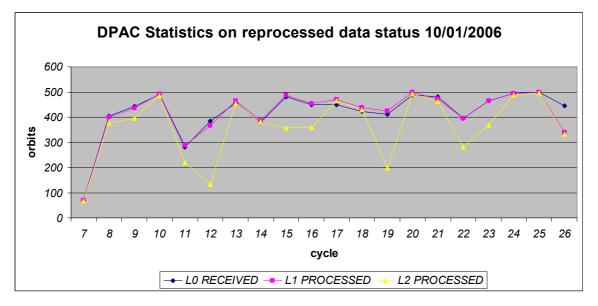


Fig. 4-3: DPAC statistics on reprocessed data

5 LEVEL 1 PRODUCT QUALITY MONITORING

5.1 Processor Configuration

5.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 1 data is 5.04. The corresponding product specification is [2]. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL_1P_Disclaimers.pdf describes known artefacts.

page 34 of 60

Table 5.1 gives an overview of changes implemented with processor versions IPF 5.04 and 5.01.

In addition here is a summary on the definition of the SZA used in previous and actual IPFs.

For IPF versions 4.02, 5.00, 5.01, 5.04 the SZA is defined with respect to Top of Atmosphere (TOA).

Instead for IPF versions 4.03, 4.01 and earlier versions the SZA is defined with respect to Tangent Height. IPF versions 4.02 and 5.00 however were not used operationally but to generate the validation dataset for the ACVT workshop in 2004.

A new upgrade on the IPF to version 6.00 is currently in progress.

IPF	Description	Proc	Date	Start
Version		Centre		Orbit
5.04	No algorithm specification changes were implemented, but two algorithm	PDHS-K	21-AUG-2004	12942
		LRAC	20-AUG-2004	12750
	implementation errors have been	PDHS-E	16-AUG-2004	12823
	corrected. In addition, code	DPAC	12-AUG-2004	12879
	adaptations have been performed to			
	resolve performance problems			
	encountered during reprocessing. The			
	list of modifications is as follows:			
	 An incorrect polarisation-ratio calculation has been corrected, to remove radiance discrepancies up to 1% between prototype and operational processor. Memory leaks have been detected and eliminated Two modifications have been performed to avoid level 1B processing crashes 			
5.01		DPAC	31-MAR-2004	
2.01		PDHS-E	24-MAR-2004	
		PDHS-K	2 1 1011 110 2001	
		LRAC		

Tab. 5-1: Processor Version and main changes

issue 1 revision 0 -

page 35 of 60

5.1.2 Auxiliary Data Files

For operation of the SCIAMACHY level 1 processor a set of Auxiliary files as input is required.

These Auxiliary files consist of a subset that usually changes only in correspondence with a new IPF version, namely the Initialisation file (SCI_LI1_AX), the Key Data File (SCI_KD1_AX). In addition there is the m-factor file (SCI_MF1_AX), which shall describe the degradation of the instrument during its stay in orbit (note that the m-factor file has not been changed so far).

Another subset of Auxiliary Files are the In-flight calibration Data files which are generated when calibration measurements are included in the set of level 0 data to be processed. Four types of In-flight calibration Auxiliary files exist:

- Leakage Current Calibration (SCI_LK1_AX updated on orbital basis)
- Solar Reference Spectrum (SCI_SU1_AX updated on daily basis)
- Spectral Calibration Parameters (SCI_SP1_AX updated on a monthly basis)
- Pixel-to-Pixel Gain and Etalon Parameters (SCI_PE1_AX updated on a monthly basis)

Since 04 May 2004 LK1 Auxiliary Files (Leakage Current Calibration) were processed operationally by the IECF. A SCI_LK1_AX is generated about every orbit (if measurements do not lie in the SAA area or orbit phase constraints occur).

SU1 Auxiliary Files were operationally processed starting from day 08 May 2004, a new SCI_SU1_AX file is generated every day with a validity time of two weeks.

PE1 and SP1 Auxiliary files are generated once per month with measurements of the monthly calibration orbits.

The table in Appendix A gives an overview about the Auxiliary files for the reporting period September - October 2005.

Fig. 5.1 shows statistics of the SU1 and LK1 ADFs generated operationally with the IECF. It has to be noted that unavailability periods are excluded from statistics. Generation of SU1 ADFs for September and October 2005 was 100%.

The LK1 ADF statistic is calculated by dividing the number of all LK1 ADFs by number of all available (to IECF) level 1 orbits. The statistics on available LK1 ADFs during September (41.9%) and October 2005 (53.2%) is lower than during previous months. In average ADFs used to be available about 58% per month. The statistic does not take into account SAA and orbit phase constraints. Special analysis showed that only 6-8 orbits per day can be used for LK1 ADF processing, and therefore the performance is at 80-100%.

During the reported period hardware failures at ESRIN caused a delay of the generation of in flight ADFs. Especially during September most ADFs were generated with a time delay of average 1 week. This had an impact for processing L1b Near Realtime products being processed with ADFs older than 1 week and the low availability of LK1 ADFs.

2003 issue 1 revision 0 -

page 36 of 60

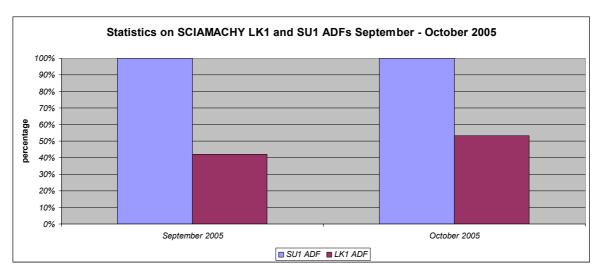


Fig. 5-1: Statistics on LK1 and SU1 processing

5.1.3 Spectral Performance

Future reports will contain analyses of spectral performance.

5.1.4 Radiometric Performance

Future reports will contain analyses of spectral performance.

5.1.5 Other Calibration Results

5.1.5.1 SMR analysis

The IECF generates daily SU1 Auxiliary Files, that contain new sun mean reference spectra for the different possible modes (e.g., subsolar, ESM diffuser, occultation).

Fig. 5-2 to Fig. 5-5 show the ratios of SMR spectra derived from calibrated SMR/ESM during the months September - October 2005. The ratios were determined by dividing the spectra of the beginning of each month to a set of days during each month. All ratios are not corrected for variation of distance earth/sun.

In detail the spectra used for the ratios of each month are the following:

- September 2005 • Reference SMR - 01 September 2005 SMR used for ratios: 02, 03, 04, 05, 06, 07, 14, 21, 28 September 2005 October 2005 •
 - Reference SMR 01 October 2005 SMR used for ratios: 02, 03, 04, 05, 06, 07, 14, 21, 28 October 2005

issue 1 revision 0 -

page 37 of 60

The overall changes lie between 1 - 2 % during one month. In channel 1 around pixel 550 some features can be noticed as well as in channel 2 at pixel 840. The reason for these features need to be investigated. A possible explanation could be a solar variability causing Fraunhofer lines with different intensities. Generally a spectral feature could have significant impact on the product quality, especially when the affected spectral parts are used for DOAS retrieval.

The IR channels are impacted by more noise than the UV-visible channels.

Fig. 5-6 and Fig. 5-7 show SMR ratios on a long term trend dividing the ESM spectra from days 30-Sep-2002 and 30-Sep-2005, respectively 31-Oct-2002 and 31-Oct-2005. The first spectrum available exists for 18-Jul-2002. However to consider sun/earth distance, the ratio was performed with spectra from same calendar days. What can be concluded is that for channels 1-2 an average degradation of about 5% is observed, channels 3-6 degrade by less than 1%. The signal in channels 7 and 8 has increased with respect to the SMR of year 2002. This is consistent with the Light Path monitoring at SOST-IFE. The effect is due to ice contamination for the last two channels.

page 38 of 60

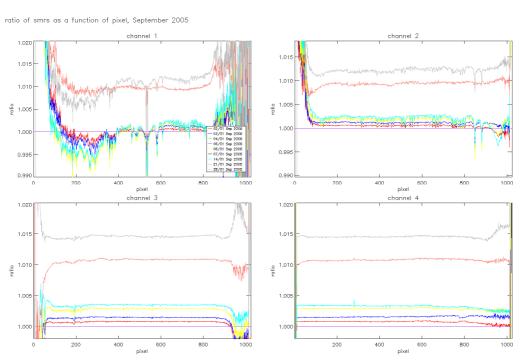
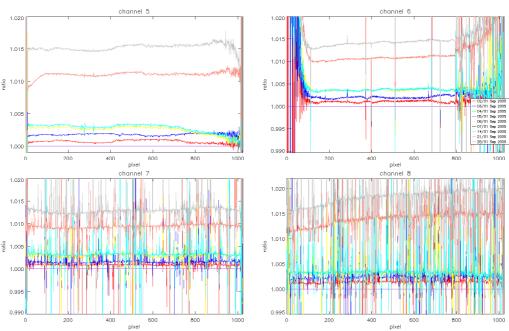



Fig. 5-2: SMR ratios per detector channel 1-4 (changes during September 2005)

ratio of smrs as a function of pixel, September 2005

Fig. 5-3: SMR ratios per detector channel 5-8 (changes during September 2005)

issue 1 revision 0 -

page 39 of 60

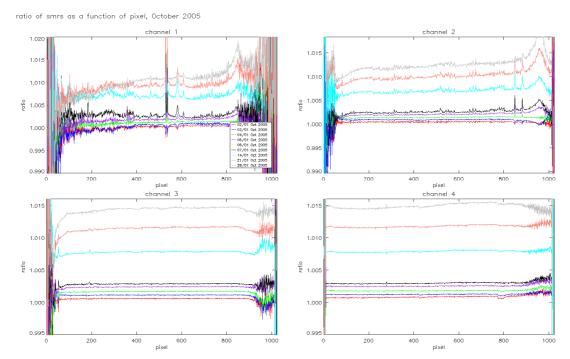


Fig. 5-4: SMR ratios per detector channel 1-4 (changes during October 2005)

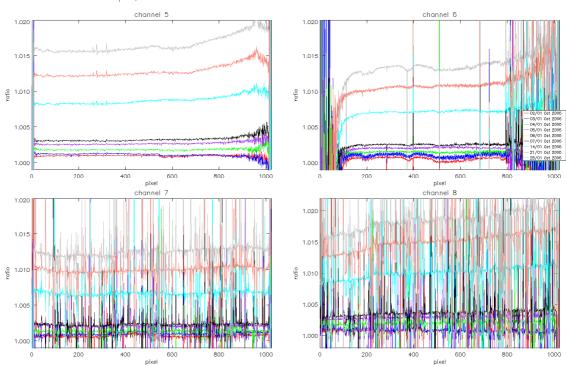


Fig. 5-5: SMR ratios per detector channel 5-8 (changes during October 2005)


ratio of smrs as a function of pixel, October 2005

C CSS

issue 1 revision 0 -

page 40 of 60

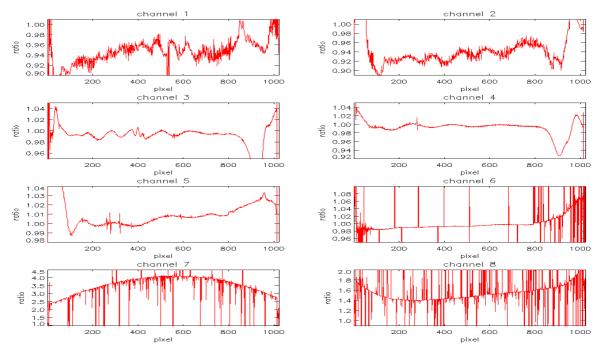


Fig. 5-6: SMR ratios per detector channel on Long Term Trend

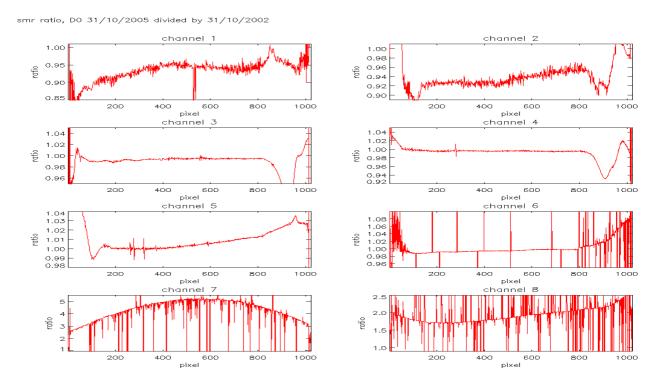


Fig. 5-7: SMR ratios per detector channel on Long Term Trend

page 41 of 60

5.1.5.2 LK1 analysis

On an orbital basis a leakage current calibration is performed, if measurement data do not lie in the South Atlantic Anomaly region.

In Fig. 5-8 to Fig. 5-11 the leakage constant part FPN (fixed pattern noise) of the LK1 ADFs are analysed by determining the ratios of the FPN of each month with a time distance of one orbit, one day, one week, two weeks, three weeks and a month.

For channels 1-5 and the first part of channel 6, during up to three weeks nearly no changes can be noticed. Sudden jumps however between the different dark current ratios can be seen for channels 1, 2, 4 and 5 between 2 and 3 weeks. They are very small but above the noise level.

The IR channels show a lot of noise. Here an improvement is foreseen with the new processor version IPF 6.00, where the time dependent part of the leakage current will be considered.

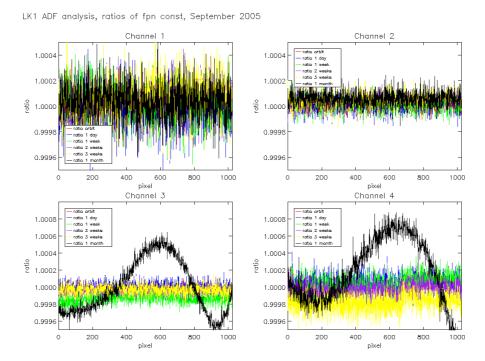


Fig. 5-7: dark current ratios (constant part) channel 1-4 during September 2005, Reference Spectrum used: Orbit 18325, 01-September-2005

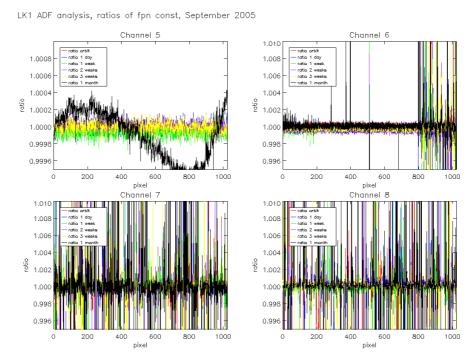


Fig. 5-8: dark current ratios (constant part) channel 5-8 during September 2005, Reference Spectrum used: Orbit 18325, 01-September-2005

issue 1 revision 0 -

page 42 of 60

2000

issue 1 revision 0 -

page 43 of 60

LK1 ADF analysis, ratios of fpn const, October 2005

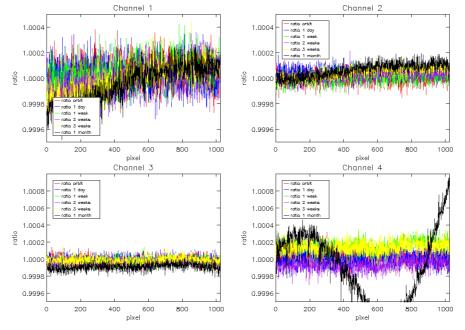


Fig. 5-9: dark current ratios (constant part) channel 1-4 during October 2005, Reference Spectrum used: Orbit 18755, 01-Oct-2005

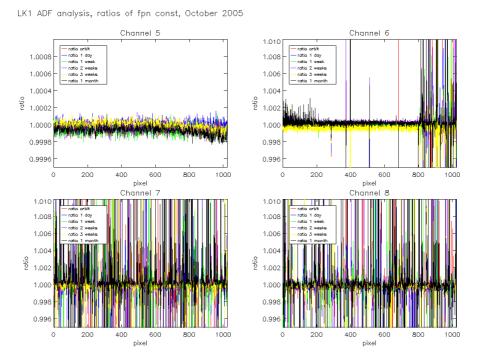


Fig. 5-10: dark current ratios (constant part) channel 5-8 during October 2005, Reference Spectrum used: Orbit 18755, 01-Oct-2005

2003

issue 1 revision 0 -

page 44 of 60

5.1.6 Pointing Performance

The results on the analysis with respect to the Pointing Performance were presented in previous BMR.

The results of this study are being implemented in the new SCIAMACHY processor IPF 6.0.

issue 1 revision 0 -

page 45 of 60

6 LEVEL 2 NRT PRODUCT QUALITY MONITORING

6.1 Processor Configuration

6.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 2 data is 5.04. The according product specification is [2]. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL_2P_Disclaimers.pdf describes known artefacts. SCIAMACHY NRT products generated with IPF 5.04 contain wrong ozone and AMF values due to a wrong handling of the seasonal index 3. This occurs to data starting from day 15 October 2005 until 31 December 2005 (as well as for previous years).

Table 6.1 shows the implementation dates of the IPF at the different PDS processing centres and the main modifications implemented.

issue 1 revision 0 -

page 46 of 60

IPF Version	Description	Proc Centre	Date
5.04	No algorithm specification changes	PDHS-K	21-AUG-2004
	were implemented, but two algorithm	LRAC	20-AUG-2004
	implementation errors have been	PDHS-E	16-AUG-2004
	corrected. In addition, code	DPAC	12-AUG-2004
	adaptations have been performed to		
	resolve performance problems		
	encountered during reprocessing. The		
	list of modifications is as follows:		
	• The incorrect handling of the		
	season index 4 has been		
	corrected.		
	, , , , , , , , , , , , , , , , , ,		
	• An incorrect polarisation-ratio		
	calculation has been corrected, to remove radiance discrepancies up		
	to 1% between prototype and		
	operational processor.		
	• Memory leaks have been		
	detected and eliminated		
	• An adaptation has been		
	implemented to allow co-		
	existence with the initialisation		
	file used by the Off-Line		
	processor		
5.01	description for cloud MDS	DPAC	31-MAR-2004
	updated	PDHS-E	24-MAR-2004
	• minor changes in MPI and USA	PDHS-K	
			1

Tab. 6-1: Level 2 Processor Configuration

LRAC

climatology description

list of surface types fixed, note

SCIA FM spectra fixed latitude

about vegetation index added O₃ FM formula fixed sizes of

solar zenith angle grid fixed

latitude grids fixed

zones fixed

•

•

•

•

issue 1 revision 0 -

page 47 of 60

6.1.2 Auxiliary Data Files

Auxiliary Files being used as input for SCI_NL_2P products are listed in table 6-2. These ADF files are generally not changed.

SCI FM2 AXVIEC20040309 092553 19990101 000000 20991231 235959
SCI_BL2_AXVIEC20020220_093709_20020101_000000_20200101_000000
SCI_CC2_AXVIEC20020220_094004_20020101_000000_20200101_000000
SCI_CL2_AXVIEC20020220_094214_20020101_000000_20200101_000000
SCI_CS2_AXVIEC20020220_094417_20020101_000000_20200101_000000
SCI_MF2_AXVIEC20040309_093236_19990101_000000_20991231_235959
SCI_PF2_AXVIEC20020220_100450_20020101_000000_20200101_000000
SCI_PR2_AXVIEC20020220_100642_20020101_000000_20200101_000000
SCI_RC2_AXVIEC20020220_100912_20020101_000000_20200101_000000
SCI_UC2_AXVIEC20040309_092027_19990101_000000_20991231_235959
SCI_SF2_AXVIEC20020220_101039_20020101_000000_20200101_000000
SCI_LI2_AXVIEC20040308_170000_20020101_000000_20200101_000000

Tab. 6-2: Level 2 Auxiliary Files

6.2 O_3 consistency checking

Future reports will contain information on this issue.

6.3 NO₂ consistency checking

 NO_2 vertical column density (VCD) values of one month were averaged using QUADAS, filtering those data where the VCD flags are 0. Diurnal variations have not been corrected (no model applied). Fig. 6-1 and Fig. 6-2 are aimed at processing consistency checking and are not intended for geophysical interpretation.

Generally, high concentration of NO_2 is expected over industrial regions, as over North America, especially the East coast, over central Europe, China and South Africa.

6.3.1 NO₂ VCD map September 2005

High NO₂ VCD values van be seen over industrial regions.

2003

issue 1 revision 0 -

page 48 of 60

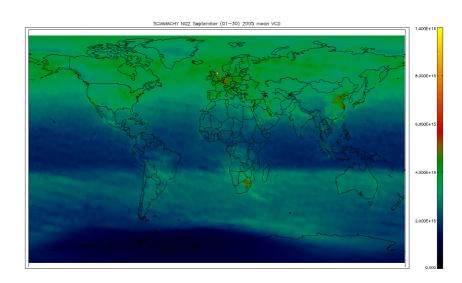


Fig. 6-1: NO₂ VCD world map 01-30 September 2005 - monthly average

6.3.2 NO₂ VCD map October 2005

esa

The world map showing the distribution of mean values of NO_2 VCD values of October 2005 contains unphysical values at high latitudes which need to be investigated.

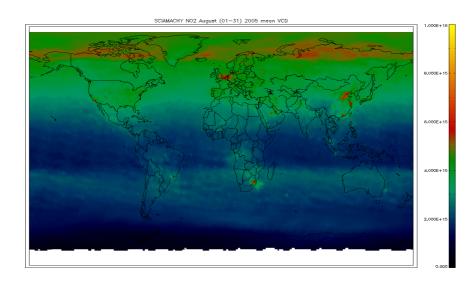


Fig. 6-2: NO₂ VCD world map 01-31 October 2005 - monthly average

issue 1 revision 0 -

page 49 of 60

7 LEVEL 2 OFFLINE PRODUCT QUALITY MONITORING

7.1 Processor Configuration

7.1.1 Version

In January 2005 the SCIAMACHY Level 2 Offline product SCI_OL_2P was released, data are generated with processor version 2.5.

The according product specification is PO-RS-MDA-GS-2009_15_3H. The disclaimer at <u>http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_OL_2P_Disclaimers.pdf</u> describes known artefacts.

SCI_OL_2P products contain geolocated vertical column amounts of O_3 , NO_2 Nadir measurements, as well as stratospheric Limb profiles of O_3 , NO_2 .

7.1.2 Auxiliary Data Files

Input for Level 2 Offline processing is the Initialization File SCI_IN_AXNPDE20041221_112322_00000000000_000000_000000_00000.N1, that usually is changed only in case of a processor upgrade.

7.1.3 Monitoring results

In future reports results on Limb and Nadir products will be presented here.

8 VALIDATION ACTIVITIES AND RESULTS

8.1 SCIAMACHY-ECMWF Comparisons using SCI_RV_2P

8.1.1 Summary of the ECMWF SCIAMACHY monthly report for September 2005

- SCIAMACHY data quality stable.
- SCIAMACHY data about 5 DU lower in the global mean than ECMWF ozone values
- Increase of SCIAMACHY data standard deviations in the global mean
- Relatively large biases south of 50S along 90W, 0 (and 90E) meridians
- The operational ECMWF model version used was CY29R2.

The full report is available at http://earth.esa.int/pcs/envisat/tmp_calval_res/

issue 1 revision 0 -

page 50 of 60

Below see the ECMWF plot on SCIAMACHY mean observation in DU.

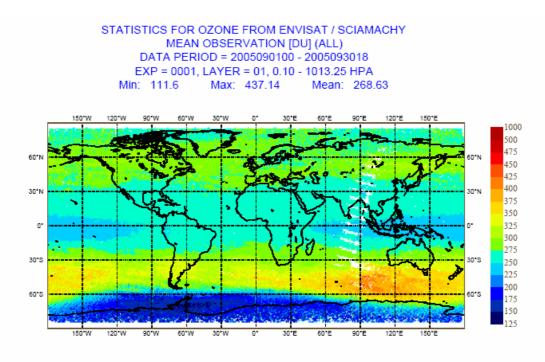


Fig. 8-1: Ozone Mean ECMWF September 2005

8.1.2 Summary of the ECMWF SCIAMACHY monthly report for October 2005

- SCIAMACHY data quality not stable.
- Change in SCIAMACHY SCI RV 2P data on 15 October
- SCIAMACHY data about 16 DU higher in the global mean than ECMWF ozone values after 15 October
- Unrealistically large ozone values south of 75S
- Still relatively large biases south of 50S along about 90W, 0 and 90E meridians
- The operational ECMWF model version used was CY29R2.

The full report is available at http://earth.esa.int/pcs/envisat/tmp_calval_res/

Below see the ECMWF plot on SCIAMACHY mean observation in DU.

page 51 of 60

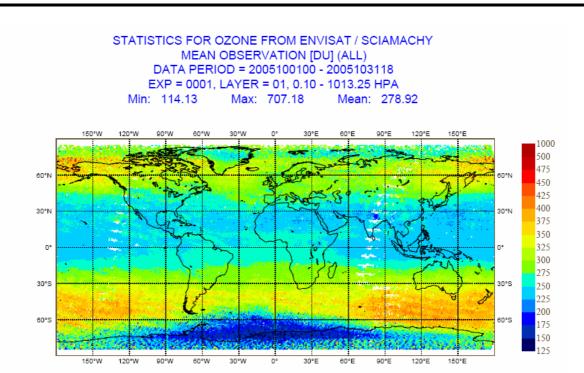


Fig. 8-2: Ozone Mean ECMWF October 2005

8.2 Statistics from Inter comparison with External Data

Future reports will contain information on this issue.

۷۰۵ issue 1 revision 0 -

Sa

page 52 of 60

APPENDIX A

ife

esa⁴

Туре	ADF Name	
PE1 AX	SCI PE1 AXVIEC20050627 154704 20050621 000000 20900101 000000	
SP1 AX	SCI SP1 AXVIEC20050901 074503 20050819 000000 20060201 000000	
_	SCI_SP1_AXVIEC20050920_104957_20050917_000000_20060301_000000	
	SCI_SP1_AXVIEC20051024_172837_20051016_000000_20060401_000000	
SU1 AX	SCI_SU1_AXVIEC20050904_043731_20050901_053856_20050915_114902	
_	SCI_SU1_AXVIEC20050907_000816_20050904_022240_20050918_211909	
	SCI_SU1_AXVIEC20050907_163122_20050902_003403_20050916_021034	
	SCI_SU1_AXVIEC20050907_164215_20050903_000026_20050917_014122	
	SCI_SU1_AXVIEC20050908_001007_20050905_003810_20050919_021551	
	SCI_SU1_AXVIEC20050909_000940_20050906_000811_20050920_014722	
	SCI_SU1_AXVIEC20050910_001824_20050907_011452_20050921_212454	
	SCI_SU1_AXVIEC20050911_001803_20050908_004409_20050922_021708	
	SCI_SU1_AXVIEC20050912_002201_20050909_001239_20050923_015143	
	SCI_SU1_AXVIEC20050915_002051_20050912_045307_20050926_220700	
	SCI_SU1_AXVIEC20050916_083426_20050913_202011_20050927_204100	
	SCI_SU1_AXVIEC20050917_001240_20050914_005624_20050928_224511	
	SCI_SU1_AXVIEC20050918_003142_20050915_002455_20050929_020344	
	SCI_SU1_AXVIEC20050919_001027_20050916_013157_20050930_214146	
	SCI_SU1_AXVIEC20050920_074516_20050917_082454_20051001_114558	
	SCI_SU1_AXVIEC20050921_001841_20050918_003102_20051002_020245	
	SCI_SU1_AXVIEC20050923_001157_20050920_010803_20051004_211559	
	SCI_SU1_AXVIEC20050925_004905_20050922_000504_20051006_013827	
	SCI_SU1_AXVIEC20050926_001436_20050923_011243_20051007_212119	
	SCI_SU1_AXVIEC20050927_001153_20050924_004113_20051008_021618	
	SCI_SU1_AXVIEC20050928_001743_20050925_000943_20051009_015029	
	SCI_SU1_AXVIEC20050930_001548_20050927_004933_20051011_022213	
	SCI_SU1_AXVIEC20051001_005934_20050928_015543_20051012_220454	
	SCI_SU1_AXVIEC20051002_001748_20050929_012457_20051013_213236	
	SCI_SU1_AXVIEC20051003_001804_20050930_005411_20051014_020622	
	SCI_SU1_AXVIEC20051003_102713_20050919_203323_20051003_214602	
	SCI_SU1_AXVIEC20051003_105709_20050910_212743_20050924_231228	
	SCI_SU1_AXVIEC20051003_111104_20050911_005024_20050925_020315	
	SCI_SU1_AXVIEC20051003_152118_20050921_211101_20051005_222426	
	SCI_SU1_AXVIEC20051003_154949_20050926_102258_20051010_104134	
	SCI_SU1_AXVIEC20051004_001853_20051001_002158_20051015_015704	
	SCI_SU1_AXVIEC20051005_001915_20051002_013021_20051016_213758	
	SCI_SU1_AXVIEC20051006_001513_20051003_005934_20051017_021149	
	SCI_SU1_AXVIEC20051007_001800_20051004_002933_20051018_020259	
	SCI_SU1_AXVIEC20051008_002125_20051005_013627_20051019_214439	
	SCI_SU1_AXVIEC20051009_002614_20051006_010541_20051020_210737	
	SCI_SU1_AXVIEC20051010_001055_20051007_003411_20051021_020919	
	SCI_SU1_AXVIEC20051011_001324_20051008_000242_20051022_013749	
	SCI_SU1_AXVIEC20051012_001149_20051009_011104_20051023_211936	

issue 1 revision 0 -

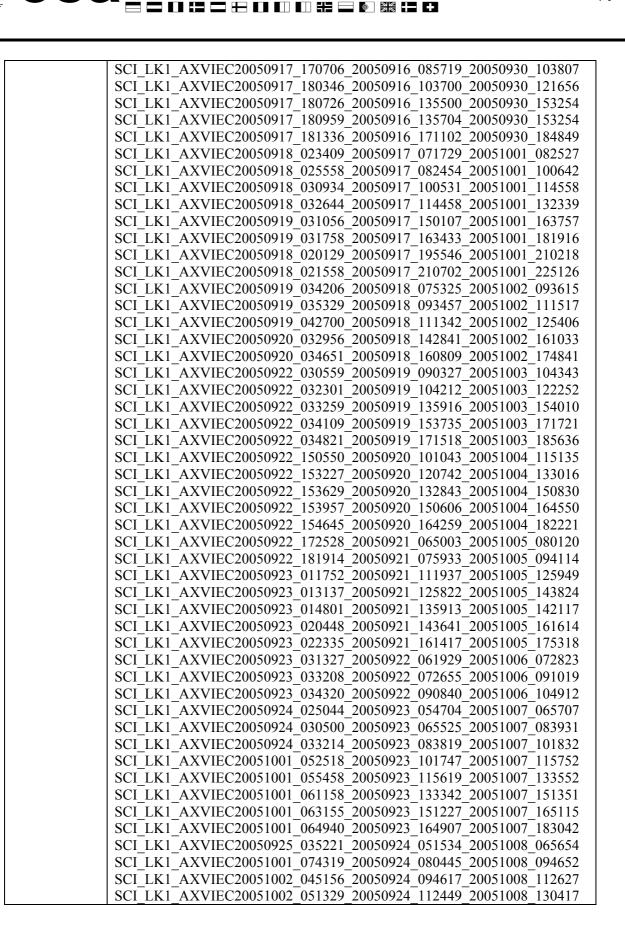
page 53 of 60

	CCL CL1 AVAUE C20051012 00210(20051010 004010 20051024 021514
	SCI_SU1_AXVIEC20051013_002106_20051010_004018_20051024_021514
	SCI_SU1_AXVIEC20051014_001630_20051011_000848_20051025_014344
	SCI_SU1_AXVIEC20051016_001554_20051013_004625_20051027_022134
	SCI_SU1_AXVIEC20051017_001531_20051014_001411_20051028_015004
	SCI_SU1_AXVIEC20051018_004837_20051015_012317_20051029_212717
	SCI_SU1_AXVIEC20051019_012904_20051016_005147_20051030_224000
	SCI_SU1_AXVIEC20051020_001806_20051017_002101_20051031_015454
	SCI_SU1_AXVIEC20051021_004745_20051018_012923_20051101_121155
	SCI_SU1_AXVIEC20051023_002323_20051020_002623_20051103_012750
	SCI_SU1_AXVIEC20051024_001456_20051021_013529_20051104_213751
	SCI_SU1_AXVIEC20051025_002012_20051022_021347_20051105_114458
	SCI_SU1_AXVIEC20051026_002227_20051023_003228_20051106_020822
	SCI SU1 AXVIEC20051026 093022 20051012 201318 20051026 212448
	SCI SU1 AXVIEC20051026 103301 20051019 205617 20051102 224051
	SCI_SU1_AXVIEC20051027_002244_20051024_014134_20051107_214408
	SCI_SU1_AXVIEC20051028_003407_20051025_011003_20051108_211258
	SCI_SU1_AXVIEC20051029_003154_20051026_003832_20051109_021414
	SCI_SU1_AXVIEC20051030_002427_20051027_000702_20051110_014244
	SCI SU1 AXVIEC20051031 001249 20051028 011607 20051111 211849
	SCI SU1 AXVIEC20051101 003732 20051029 004436 20051112 222747
	SCI SU1 AXVIEC20051102 001835 20051030 001306 20051113 014900
	SCI SU1 AXVIEC20051103 002240 20051031 012211 20051114 212505
LK1 AX	SCI LK1 AXVIEC20050902 040015 20050901 053856 20050915 072140
	SCI_LK1_AXVIEC20050902_010015_20050901_055050_20050915_072110
	SCI_LK1_AXVIEC20050902_043352_20050901_072020_20050915_002251
	SCI_LK1_AXVIEC20050902_015552_20050901_0022515_20050915_100522 SCI_LK1_AXVIEC20050902_045342_20050901_100830_20050915_114902
	SCI_LK1_AXVIEC20050902_045542_20050901_100050_20050915_114902 SCI_LK1_AXVIEC20050906_172259_20050901_132630_20050915_150352
	SCI_LK1_AXVIEC20050906_172239_20050901_152050_20050915_164211
	SCI_LK1_AXVIEC20050906_190702_20050901_150106_20050915_101211 SCI_LK1_AXVIEC20050906_190702_20050901_163938_20050915_181952
	SCI_LK1_AXVIEC20050906_192327_20050902_064749_20050916_075628
	SCI_LK1_AXVIEC20050906_152527_20050902_004749_20050916_075028
	SCI_LK1_AXVIEC20050906_101012_20050902_125008_20050916_145544
	SCI_LK1_AXVIEC20050906_103506_20050902_135014_20050916_141004 SCI_LK1_AXVIEC20050906_193544_20050902_143440_20050916_125654
	SCI_LK1_AXVIEC20050906_155544_20050902_145446_20050916_125054 SCI_LK1_AXVIEC20050906_181917_20050903_061619_20050917_072545
	SCI_LKI_AXVIEC20050906_181917_20050905_001019_20050917_072545 SCI_LK1_AXVIEC20050906_195145_20050903_122438_20050917_090644
	SCI_LK1_AXVIEC20050906_193145_20050903_122438_20050917_090044 SCI_LK1_AXVIEC20050906_192749_20050903_140310_20050916_093838
	SCI_LKI_AXVIEC20050906_192749_20050903_140310_20050916_095838 SCI_LK1_AXVIEC20050906_192922_20050903_140310_20050917_154209
	SCI_LKI_AXVIEC20050906_192922_20050903_140516_20050917_154209 SCI_LK1_AXVIEC20050906_195709_20050903_140514_20050917_154209
	SCI_LK1_AXVIEC20050906_195709_20050905_140514_20050917_154209 SCI_LK1_AXVIEC20050906_205032_20050903_171900_20050917_185705
	SCI_LKI_AXVIEC20050906_205052_20050905_171900_20050917_185705 SCI_LK1_AXVIEC20050906_111322_20050904_054449_20050918_072808
	SCI_LK1_AXVIEC20050906_111522_20050904_054449_20050918_072808 SCI_LK1_AXVIEC20050906_211739_20050904_072634_20050918_083340
	SCI_LK1_AXVIEC20050906_213023_20050904_083251_20050918_101550 SCI_LK1_AXVIEC20050908_174928_20050904_115308_20050918_133340
	SCI_LK1_AXVIEC20050908_174928_20050904_115308_20050918_133340
	SCI_LK1_AXVIEC20050908_175958_20050904_133344_20050918_145804 SCI_LK1_AXVIEC20050907_023932_20050904_164639_20050918_182553
	SCI_LK1_AXVIEC20050907_023932_20050904_164639_20050918_182553
	SCI_LK1_AXVIEC20050907_025313_20050905_065408_20050919_080225
	SCI_LK1_AXVIEC20050908_181219_20050905_080120_20050919_094431
	SCI_LK1_AXVIEC20050908_182527_20050905_094305_20050919_112351
	SCI_LK1_AXVIEC20050908_183603_20050905_130418_20050919_143933
	SCI_LK1_AXVIEC20050908_184305_20050905_140134_20050919_142210

esa 4

issue 1 revision 0 -

page 54 of 60


SCI_LK1_AXVIEC20050908_185559_20050905_143937_20050919_161830 SCI_LK1_AXVIEC20050908_190930_20050905_144046_20050919_161830

SCI_LKI_AXVIEC20050908_185559_20050905_143937_20050919_161830
SCI_LK1_AXVIEC20050908_190930_20050905_144046_20050919_161830
SCI_LK1_AXVIEC20050908_193259_20050906_091244_20050920_105250
SCI_LK1_AXVIEC20050908_194141_20050906_105103_20050920_123148
SCI LK1 AXVIEC20050908 195633 20050906 123044 20050920 141019
SCI_LK1_AXVIEC20050908_201210_20050906_140916_20050920_154725
SCI_LK1_AXVIEC20050908_202156_20050906_154447_20050920_172529
SCI_LK1_AXVIEC20050908_203455_20050906_172314_20050920_190358
SCI LK1 AXVIEC20050908 205215 20050907 143826 20050921 151655
SCI_LK1_AXVIEC20050908_210430_20050907_151413_20050921_165317
SCI_LK1_AXVIEC20050908_210450_20050907_165053_20050921_105517 SCI_LK1_AXVIEC20050908_211821_20050907_165053_20050921_183213
SCI_LK1_AXVIEC20050909_032807_20050908_065905_20050922_080856
SCI_LK1_AXVIEC20050909_035533_20050908_005905_20050922_080830 SCI_LK1_AXVIEC20050909_035533_20050908_112743_20050922_130832
SCI_LK1_AXVIEC20050909_053535_20050908_112145_20050922_150832 SCI_LK1_AXVIEC20050910_034109_20050908_161923_20050922_175905
SCI_LK1_AXVIEC20050910_035615_20050909_062832_20050923_073659
SCI_LK1_AXVIEC20050910_041106_20050909_073610_20050923_091820
SCI_LK1_AXVIEC20050911_034626_20050909_123650_20050923_141452
SCI_LK1_AXVIEC20050911_040238_20050909_141318_20050923_155409
SCI_LK1_AXVIEC20050911_043157_20050910_070536_20050924_084712
SCI_LK1_AXVIEC20050911_044846_20050910_084613_20050924_102549
SCI_LK1_AXVIEC20050911_050415_20050910_120521_20050924_134456
SCI_LK1_AXVIEC20050911_051817_20050910_134353_20050924_152016
SCI_LK1_AXVIEC20050911_052947_20050910_151816_20050924_170040
SCI_LK1_AXVIEC20050912_010827_20050911_070513_20050925_081348
SCI LK1 AXVIEC20050913 080838 20050911 095423 20050925 113507
SCI LK1 AXVIEC20050913 072555 20050911 144947 20050925 162725
SCI_LK1_AXVIEC20050914_034640_20050912_063247_20050926_074309
SCI LK1 AXVIEC20050914 072454 20050912 074205 20050926 092419
SCI LK1 AXVIEC20050914 072425 20050912 074313 20050926 092419
SCI LK1 AXVIEC20050914 080403 20050912 092254 20050926 110253
SCI_LK1_AXVIEC20050915_033141_20050912_110113_20050926_124309
SCI_LK1_AXVIEC20050917_044035_20050912_124202_20050926_142017
SCI_LK1_AXVIEC20050917_050413_20050912_124202_20050926_142017
SCI_LK1_AXVIEC20050917_050415_20050912_141817_20050920_155050 SCI_LK1_AXVIEC20050917_061510_20050913_071035_20050927_085256
SCI_LK1_AXVIEC20050917_001310_20050913_071055_20050927_083250 SCI_LK1_AXVIEC20050917_064233_20050913_085124_20050927_103207
SCI_LK1_AXVIEC20050917_004235_20050913_083124_20050927_103207 SCI_LK1_AXVIEC20050917_065925_20050913_103052_20050927_121134
SCI_LK1_AXVIEC20050917_071547_20050913_121033_20050927_134942
SCI_LK1_AXVIEC20050917_073022_20050913_134756_20050927_152756
SCI_LK1_AXVIEC20050917_074518_20050913_152532_20050927_170717
SCI_LK1_AXVIEC20050917_081001_20050913_170500_20050927_184248
SCI_LK1_AXVIEC20050915_024302_20050914_052948_20050928_071135
SCI_LK1_AXVIEC20050917_082423_20050914_071025_20050928_081905
SCI_LK1_AXVIEC20050917_090217_20050914_113755_20050928_131745
SCI_LK1_AXVIEC20050917_092924_20050914_163235_20050928_181212
SCI_LK1_AXVIEC20050917_101709_20050915_110830_20050929_124817
SCI_LK1_AXVIEC20050917_103809_20050915_124701_20050929_142713
SCI_LK1_AXVIEC20050917_110338_20050915_142534_20050929_160434
SCI_LK1_AXVIEC20050917_113454_20050915_160201_20050929_174124
SCI LK1 AXVIEC20050917 155309 20050915 173929 20050929 192127
SCI LK1 AXVIEC20050917 162200 20050916 071547 20050930 085857

issue 1 revision 0 -

page 55 of 60

issue 1 revision 0 -

page 56 of 60

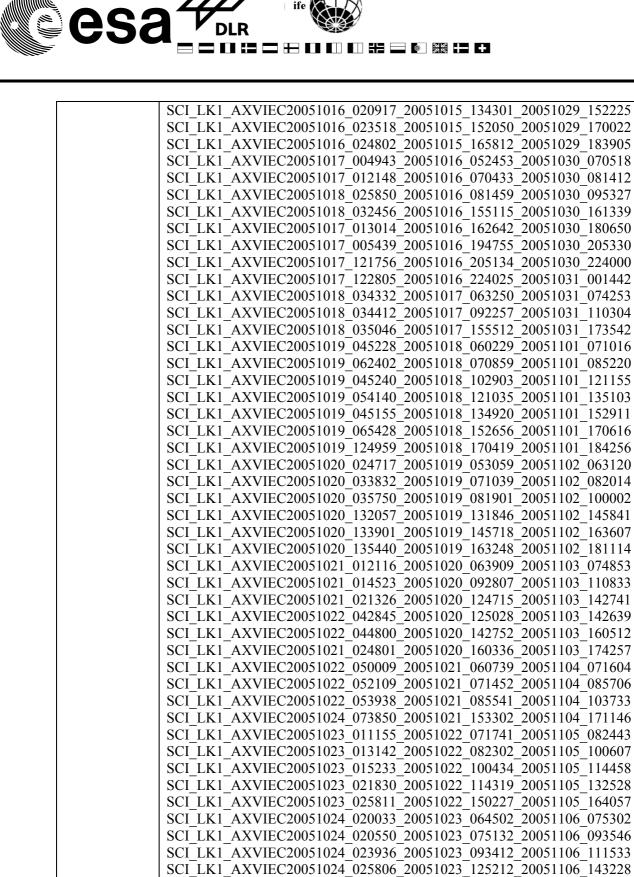
issue 1 revision 0 -

page 57 of 60

SCI LK1 AXVIEC20051004 125459 20051003 082255 20051017 100511 SCI LK1 AXVIEC20051004 135206 20051003 114204 20051017 132228 SCI LK1 AXVIEC20051004 140028 20051003 132048 20051017 145912 SCI LK1 AXVIEC20051004 141810 20051003 145620 20051017 163910 SCI LK1 AXVIEC20051004 125546 20051003 163657 20051017 181513 SCI LK1 AXVIEC20051004 090521 20051003 210608 20051017 224905 SCI LK1 AXVIEC20051005 014530 20051004 002933 20051018 020259 SCI LK1 AXVIEC20051005 024235 20051004 031947 20051018 050256 SCI LK1 AXVIEC20051005 025643 20051004 064100 20051018 075151 SCI LK1 AXVIEC20051005 031831 20051004 075030 20051018 093231 SCI LK1 AXVIEC20051005 034050 20051004 093106 20051018 111250 SCI LK1 AXVIEC20051005 044000 20051004 111034 20051018 125008 SCI LK1 AXVIEC20051005 082309 20051004 142450 20051018 160749 SCI LK1 AXVIEC20051005 083740 20051004 142642 20051018 160749 SCI_LK1_AXVIEC20051005_085024_20051004_160527_20051018_174322 SCI_LK1_AXVIEC20051005_091941_20051004_192229_20051018_210517 SCI LK1 AXVIEC20051006 012837 20051004 235719 20051019 013647 SCI LK1 AXVIEC20051006 030010 20051005 024721 20051019 043038 SCI LK1 AXVIEC20051006 045350 20051005 060930 20051019 072025 SCI_LK1_AXVIEC20051006_045217_20051005_071900_20051019_090228 SCI LK1 AXVIEC20051006 122237 20051005 103904 20051019 121841 SCI LK1 AXVIEC20051006 123317 20051005 121641 20051019 135915 SCI LK1 AXVIEC20051006 124733 20051005 135717 20051019 153647 SCI LK1 AXVIEC20051006 125855 20051005 153357 20051019 171455 SCI LK1 AXVIEC20051006 133539 20051005 185157 20051019 203354 SCI LK1 AXVIEC20051007 015233 20051005 232505 20051020 010705 SCI LK1 AXVIEC20051007 032826 20051006 021552 20051020 035905 SCI_LK1_AXVIEC20051007_044327_20051006_053800_20051020_072119 SCI LK1 AXVIEC20051007 083246 20051006 082711 20051020 101022 SCI LK1 AXVIEC20051007 085435 20051006 114824 20051020 132804 SCI_LK1_AXVIEC20051007_102242_20051006_132643_20051020_150344 SCI_LK1_AXVIEC20051007_090827_20051006_132848_20051020_150344 SCI LK1 AXVIEC20051007 092518 20051006 150132 20051020 164314 SCI LK1 AXVIEC20051007 094554 20051006 163950 20051020 182055 SCI LK1 AXVIEC20051007 095955 20051006 181930 20051020 200135 SCI_LK1_AXVIEC20051009_225652_20051007_021404_20051021_032619 SCI LK1 AXVIEC20051009 232822 20051007 050739 20051021 064906 SCI LK1 AXVIEC20051010 014710 20051007 064803 20051021 075802 SCI LK1 AXVIEC20051010 020711 20051007 075637 20051021 093904 SCI_LK1_AXVIEC20051010_021621_20051007_093810_20051021_111721 SCI LK1 AXVIEC20051010 024348 20051007 111546 20051021 125638 SCI LK1 AXVIEC20051010 030648 20051007 125514 20051021 143527 SCI LK1 AXVIEC20051010 031323 20051007 143250 20051021 161154 SCI LK1 AXVIEC20051010 004937 20051008 014234 20051022 025501 SCI LK1 AXVIEC20051010 011218 20051008 043610 20051022 061704 SCI LK1 AXVIEC20051010 033927 20051008 061538 20051022 072628 SCI LK1 AXVIEC20051010 035252 20051008 090544 20051022 104601 SCI_LK1_AXVIEC20051010_043413_20051008_140229_20051022_154106 SCI LK1 AXVIEC20051011 135131 20051008 153909 20051022 171814

SCI LK1 AXVIEC20051011 104248 20051008 171631 20051022 185900

issue 1 revision 0 -


page 58 of 60

issue 1 revision 0 -

page 59 of 60

SCI LK1 AXVIEC20051024 031941 20051023 143057 20051106 160854 SCI_LK1_AXVIEC20051025_012839_20051024_061331_20051107_072342 SCI LK1 AXVIEC20051025 015057 20051024 072206 20051107 090433 SCI LK1 AXVIEC20051025 025441 20051024 104222 20051107 122331

issue 1 revision 0 -

page 60 of 60