SGDAMAGCHY 4-MONTMLY REPORTE DANUARY =APRIL 2005

prepared by/préparé par	Angelika Dehn
reference/réference ENVI-SPPA-EOPG-TN-05-0014 issue/édition 1 revision/révision 0 date of issue/date d'édition 30 June 2005 status/état Document type/type de document Distribution/distribution Technical Note	

$A P P R O V A L$

| Title
 titre | SCIAMACHY 4-Monthly Report: January-April 2005 |
| :--- | :--- | :--- | :--- |

| author
 auteur | A. Dehn, Serco-PCF |
| :--- | :--- | :--- |$|$| date $30 / 06 / 2005$ |
| :--- |
| date |

| approved by
 approuvé by | R.M. Koopman ESA/ESRIN, D/EOP-ADQ |
| :--- | :--- | :--- |$|$| date 30/06/2005 |
| :--- |
| date |

CHANGELOG

reason for change/raison du changement	issue/issue	revision/revision
date/date		

CHANGERECORD

Issue: 1 Revision: 0
reason for change/raison du changement
page(s)/page(s)
paragraph(s)/paragraph(s)

TABLEOFCONTENTS

1 INTRODUCTION 5
1.1 Scope5
1.2 References5
1.3 Acronyms and Abbreviations 6
2 SUMMARY 8
3 INSTRUMENT CONFIGURATION AND PERFORMANCE 10
3.1 In-Flight Status and Performance 10
3.1.1 Planned Operations and Measurements (SOST-DLR) 10
3.1.2 Instrument Measurement Status (SOST-DLR) 11
3.1.3 Executed Operations and Measurements (SOST-DLR) 11
3.1.4 Performance Monitoring - System (SOST-DLR) 15
3.1.5 Performance Monitoring - Light Path (SOST-IFE) 22
3.1.6 Problem Report Status (DLR-BO) 25
4 DATA AVAILABILITY STATISTICS 26
4.1 Downlink/Acquisition Performance 26
4.2 Statistics on unconsolidated data (SCI_NL_0P, SCI_NL_1P) 26
4.3 Statistics on consolidated data 27
4.4 Statistics on reprocessed data 27
5 LEVEL 1 PRODUCT QUALITY MONITORING 28
5.1 Processor Configuration. 28
5.1.1 Version 28
5.1.2 Auxiliary Data Files 29
5.1.3 Spectral Performance 30
5.1.4 Radiometric Performance 30
5.1.5 Other Calibration Results 31
5.1.5.1 SMR analysis 31
5.1.5.2 LK1 analysis 36
5.1.6 Pointing Performance 41
6 LEVEL 2 NRT PRODUCT QUALITY MONITORING 43
6.1 Processor Configuration. 43
6.1.1 Version 43
6.1.2 Auxiliary Data Files 45
$6.2 \quad \mathrm{O}_{3}$ consistency checking 45
6.3 $\quad \mathrm{NO}_{2}$ consistency checking 45
6.3.1 NO_{2} VCD map January 2005 45
6.3.2 $\quad \mathrm{NO}_{2}$ VCD map February 2005 46
6.3.3 $\quad \mathrm{NO}_{2} \mathrm{VCD}$ map March 2005 46
6.3.3.1 $\quad \mathrm{NO}_{2} \mathrm{VCD}$ anomalous values during 30-31 March 2005 47
6.3.4 $\quad \mathrm{NO}_{2}$ VCD map April 2005 48
7 LEVEL 2 OFFLINE PRODUCT QUALITY MONITORING 49
7.1 Processor Configuration 49
7.1.1 Version 49
7.1.2 Auxiliary Data Files 49
7.1.3 Monitoring results 49
8 VALIDATION ACTIVITIES AND RESULTS. 49
8.1 SCIAMACHY-ECMWF Comparisons using SCI_RV 2 P 49
8.1.1 Summary of the ECMWF SCIAMACHY monthly report for January 2005 49
8.1.2 Summary of the ECMWF SCIAMACHY monthly report for February 2005 50
8.1.3 Summary of the ECMWF SCIAMACHY monthly report for March 2005 51
8.1.4 Summary of the ECMWF SCIAMACHY monthly report for April 2005 52
8.2 Statistics from Inter comparison with External Data 53

SCIAMACHY 4-MONTHLY REPORTJANUARY-APRIL 2005

1 INTRODUCTION

The SCIAMACHY Bi-monthly report (this time 4-monthly report) documents the current status and recent changes to the SCIAMACHY instrument, its data processing chain, and its data products.
The Bi-Monthly Report (hereafter BMR) is composed of analysis results obtained by the Product Control Facility, combined with inputs received from the different groups working on SCIAMACHY operation, calibration, product validation and data quality.
The first part of the report is dedicated to Instrument Configuration and Performance. It is composed of contributions from SOST-DLR and SOST-IFE.
The remainder of the report is dedicated to Level 1 and Level 2 performance assessment and is generated by ESA/ESRIN PCF with contributions from ESA/ESTEC PLSO and DLR-IMF.

The structure of the report will be in constant evolution through the ENVISAT mission, as experience with SCIAMACHY data and quality control grows.

1.1 Scope

The main objective of the BMR is to give, on a regular basis, the status of SCIAMACHY instrument performance, data acquisition, results of anomaly investigations, calibration activities and validation campaigns. The BMR is composed of the following six sections:

- Summary;
- Instrument Configuration and Performance;
- Data Availability Statistics;
- Level 1 Product Quality Monitoring;
- Level 2 Product Quality Monitoring;
- Validation Activities and Results.

1.2 References

[1] 'ENVISAT Restituted Pitch Assessment', ENVI-SPPA-EOPG-TN-05-0011, Issue 2, Technical Note, L. Saavedra (SERCO), R. Mantovani (VITROCISET), A. Dehn (SERCO), 17 May 2005
[2] 'Comparison of SCIAMACHY limb pointing retrievals with ESOC correction tables', Technical Note, Christian von Savigny, Stefan Noël, Heinrich Bovensmann, University of Bremen, 24 Feb. 2004

1.3 Acronyms and Abbreviations

ADC	Analogue to Digital Converter
ADF	Auxiliary Data File
ANX	Ascending Node Crossing
AOCS	Attitude and Orbit Control System
APSM	Aperture Stop Mechanism
ATC	Active Thermal Control
BMR	Bi-Monthly Report
CA	Corrective Action
CTI	Configurable Transfer Item
DAC	Digital Analogue Converter
ESM	Elevation Scan Mechanism
FPN	Fixed Pattern Noise
HK	Housekeeping
ICE	Instrument Control Electronics
IECF	Instrument Engineering and Calibration Facilities
LK1	Leakage Current Auxiliary File (SCI_LK1_AX)
LOS	Line of Sight
MR	Monthly Report
NCWM	Nadir Calibration Window Mechanism
NDFM	Neutral Density Filter Mechanism
NNDEC	Non-nominal Decontamination
NRT	Near Real Time
OBM	Optical Bench Module
OCR	Operations Change Request
OSDF	Orbit Sequence Definition File
PCF	Product Control Facility
PDHS	Payload Data Handling Station (PDS)
PDHS-E	Payload Data Handling Station - ESRIN
PDHS-K	Payload Data Handling Station - Kiruna
PDS	Payload Data Segment
PE1	Pixel to Pixel/ Etalon Auxiliary File (SCI_PE1_AX)
PMD	Polarization Measurement Device
QUADAS	Quality Analysis of Data from Atmospheric Sounders
SAA	South Atlantic Anomaly
SCIAMACHY	Scanning Imaging Absorption Spectrometer for Atmospheric Chartography
SEU	Single Event Upset
SLS	Spectral Line Source
SMR	Sun Mean Reference
SOST	SCIAMACHY Operations Support Team
SP1	Spectral Calibration Auxiliary File (SCI_SP1_AX)
SU1	Sun Reference Auxiliary File (SCI_SU1_AX)
TC	Thermal Control
TRUE	Tangent height Retrieval by UV-B Exploitation

SCIAMACHY 4-MI

Vertical Column Density
WLS
White Light Source
Not complete

2 SUMMARY

- During the reported period SCIAMACHY measurements were nominal with respect to planning.
- Monthly Calibration was scheduled during Orbits

$$
\begin{aligned}
& >\text { 15168-15172 (23-Jan-2005) } \\
& >\text { 15598-15602 (22-Feb-2005) } \\
& >\text { 16013-16017 (23-Mar-2005) } \\
& >\text { 16471-16475 (24-Apr-2005) }
\end{aligned}
$$

- Three OCRs have been implemented during January - April 2005.
> OCR_013: Vertical azimuth alignment in limb geometry
$>$ OCR_021: Improvement of limb/nadir matching in subsolar orbits
> OCR_022: Vertical sampling of 1.6 km during TROCCINOX-2 campaign
- Thermal adjustment for detector 5, which was close to its upper temperature limit of 222.4 K was commanded in orbit 16192 ($05-\mathrm{Apr}-2005$).
- A non-nominal decontamination was performed, starting in orbit 14675 (20-Dec2004) ending in orbit 14860 (02-Jan-2005).
- Planned measurement interruptions took place:
$>$ 03/04-Jan-2005 (orbit 14882-14898) as part of the post-decontamination activities
$>$ 07-Jan-2005 (orbit 14930-14936) due to a planned out-of-plane orbit control manoeuvre
> 07-Mar-2005 (orbit 15916-15924) due to a planned out-of-plane orbit control manoeuvre
- Light Path monitoring:
$>$ Small degradation in UV (channels 1, 2); channel 1 degradation smaller than for other light paths - indication that ESM diffuser degrades less than ESM mirror
> Channels 3-6 radiometricly stable
> Channel 7 throughput rather stable after decontamination
$>$ Channel 8 throughput is reduced by about 20\%
- Data availability for the ESRIN chain was affected by an acquisition problem during 24 January - 08 February 2005, which is reflected in the statistics.

SCIAMACHY 4-MI

- LK1 analysis shows an anomaly for a case in March, calculating a ratio of FPN of spectra from 3 weeks time distance for channel 3 only, where the ratio is very noisy.
- First Pointing Performance analysis results are released in a technical note. Conclusions are that SCIAMACHY deviates from AOCS with a bias that is not yet clarified. There is as well a constant slope close 1 . An extended analysis is ongoing.
- $\mathrm{NO}_{2} \mathrm{VCD}$ for days 30-31 March 2005 show anomalous high values between latitudes $40-60$ degree north. Values are not appearing in Offline Products, nor prototype products. An Anomaly Report at the ground segment was opened to investigate the reason.
- A new SCIAMACHY Level 2 Offline product SCI_OL__2P was released (processor version 2.5) in January 2005.

3 INSTRUMENT CONFIGURATION AND PERFORMANCE

3.1 In-Flight Status and Performance

Detailed operations, planning and instrument status information can be found on the website of the SCIAMACHY Operations Support Team (SOST) under http://atmos.af.op.dlr.de/projects/scops/. These pages are maintained on a daily basis and show the history and actual progress of the SCIAMACHY mission.

3.1.1 Planned Operations and Measurements (SOST-DLR)

The reporting period covers the orbits 14843 (ANX $=01-J a n-2005,00: 14: 34.621$) to 16560 (ANX = 30-Apr-2005, 23:02:43.244). Four OSDF specified the planning baseline.

Orbit		ANX		OSDF
Start	Stop	Start	Stop	
14600	15043	$\begin{aligned} & \hline \text { 15-Dec-2004 } \\ & \text { 00:49:04.082 } \end{aligned}$	$\begin{aligned} & \hline \hline \text { 14-Jan-2005 } \\ & \text { 23:34:20.250 } \end{aligned}$	MPL_OSD_SHVSH_20041115_010101_00000000_33040001_20041215_004906_20050115_011454
15044	15486	$\begin{aligned} & \text { 15-Jan-2005 } \\ & \text { 01:14:56.178 } \end{aligned}$	$\begin{aligned} & \text { 14-Feb-2005 } \\ & \text { 22:19:36.418 } \end{aligned}$	MPL_OSD_SHVSH_20041207_010101_00000000_33050001_20050115_011458_20050215_000010
15487	15887	$\begin{aligned} & \text { 15-Feb-2005 } \\ & 00: 00: 12.346 \end{aligned}$	$\begin{aligned} & \text { 14-Mar-2005 } \\ & 22: 39: 43.603 \end{aligned}$	MPL_OSD_SHVSH_20050112_010101_00000000_33060001_20050215_000014_20050315_002017
15888	16560	$\begin{aligned} & \text { 15-Mar-2005 } \\ & 00: 20: 19.531 \end{aligned}$	$\begin{aligned} & 30-\mathrm{Apr}-2005 \\ & 23: 02: 43.244 \end{aligned}$	MPL_OSD_SHVSH_20050216_010101_00000000_33070001_20050315_002021_20050501_004317

Table 3-1: SCIAMACHY OSDF planning files from January - April 2005
All measurements were nominal, i.e. timelines executed on the dayside of the orbit limb/nadir sequences with wide swath settings. In-flight calibration and monitoring measurements occurred on daily, weekly and monthly timescales according to the mission scenarios. Monthly calibration was scheduled between orbits

- 15168-15172 (23-Jan-2005)
- 15598-15602 (22-Feb-2005)
- 16013-16017 (23-Mar-2005)
- 16471-16475 (24-Apr-2005)

Moon occultations were executed between orbits

- 15128-15193 (20-Jan-2005 to 25-Jan-2005)
- 15515-15616 (16-Feb-2005 to 24-Feb-2005)
- 15934-16039 (18-Mar-2005 to 25-Mar-2005)
- 16361-16459 (17-Apr-2005 to 23-Apr-2005)

In all other orbits of the monthly lunar visibility periods the moon was rising on the dayside.

Three OCRs have been implemented between January and April.

- OCR_013: Vertical azimuth alignment in limb geometry
esa

The second part of this OCR was executed 12/13-Jan-2005 (orbit 15002-15015). Timelines on the dayside of the orbit were executed with nadir and limb states having small swath width.

- OCR_021: Improvement of limb/nadir matching in subsolar orbits

From orbit 15054 onwards (15-Jan-2005), timelines in subsolar orbits are selected such that timeline pairs with IDs 48 / 52 and $51 / 49$ (before subsolar event / after subsolar event) are executed. This combines sequence 1 / sequence 2 timelines. It results in an improved matching of limb and nadir states immediately after the subsolar event.

- OCR_022: Vertical sampling of 1.6 km during TROCCINOX-2 campaign Between 29-Jan-2005 and 23-Feb-2005 (orbit 15244-15603) the vertical step height in limb state ID 32 was reduced to 1.6 km . This is the limb state which is executed between latitudes $30^{\circ} \mathrm{N}$ and $60^{\circ} \mathrm{S}$. The reduced step size supported measurements of the TROCCINOX-2 campaign over Brazil.

3.1.2 Instrument Measurement Status (SOST-DLR)

Final flight status for mission scenarios, states and timelines remained unchanged throughout the reporting period.

3.1.3 Executed Operations and Measurements (SOST-DLR)

Measurements

The OSDF planning files have been scheduled as requested except on 07-Jan-2005 (orbit 14930-14936) and 17-Mar-2005 (orbit 15916-15924) when SCIAMACHY was transferred to MEASUREMENT IDLE for a planned out-of-plane orbit control manoeuvre.

Another planned measurement interrupt occurred 03/04-Jan-2005 (orbit 14882-14898) as part of the post-decontamination activities (details see below under decontamination).

Detector thermal adjustment

The average temperature/orbit of detector 5 was close at its upper temperature limit of 222.4 K . A TC adjustment was therefore requested by SCIAMACHY and commanded in orbit 16192 (05-Apr-2005). Response of detectors $4 \& 5$ to the adjustment is shown in fig. 3-1.

TC settings (before / after adjustment) were

- $\mathrm{DAC1}=0.53 \mathrm{~W} / 0.53 \mathrm{~W}$
- $\mathrm{DAC} 2=0.70 \mathrm{~W} / 0.70 \mathrm{~W}$
- $\quad \mathrm{DAC} 3=0.03 \mathrm{~W} / 0.00 \mathrm{~W}$

Fig. 3-1: Temperature adjustment of detectors $4 \& 5$

Decontamination

A non-nominal decontamination (NNDEC) had been started in orbit 14675 (20-Dec2004, 08:05 UTC). Its warm-up phase ended 02-Jan-2005 (orbit 14860). This NNDEC implemented a new approach in the cool-down with the purpose to mimic instrument operations in January 2004, which might have been the cause for the good throughput in detector 7 after the December 2003 / January 2004 NNDEC. This approach included a planned transfer to STANDBY 37 hours after start of cool-down (orbit 14882), a period of 8.5 hours in STANDBY and transfer back to HEATER and MEASUREMENT, which was finally reached in orbit 14898 . The result of this procedure for detectors $7 \& 8$ is discussed in chapter 3.1.5.

Fig. 3-2: Representative detector temperatures (detector $1 \& 2$) during warm-up and cool-down of the NNDEC. The gap at the end of the cool-down is caused by the transfer to STANDBY.

Fig. 3-3: OBM temperatures during warm-up and cool-down of the NNDEC. The gap at the end of the cool-down is caused by the transfer to STANDBY.

SCIAMACHY 4-MI

APSM/NDFM health checks \& PMD ADC cal

In the reporting period 2 APSM/NDFM health check and 4 PMD ADC calibrations were executed. All showed nominal results.

APSM/NDFM			PMD ADC	
Orbit	ANX	Result	Orbit	ANX
15204	26-Jan-2005 $07: 05: 00$	ok	15205	26-Jan-2005 $08: 41: 30$
n.a.	n.a.	n.a.	15634	25-Feb-2005 $07: 55: 16$
16105	30-Mar-2005 $05: 36: 41$	ok	16106	$30-M a r-2005$ $07: 13: 10$
n.a.	n.a.	n.a.	16507	$27-A p r-2005$ $07: 30: 12$

Table 3-2: APSM/NDFM health check and PMD ADC calibrations

Anomalies

No anomalies, which would have transferred SCIAMACHY to a mode lower than MEASUREMENT, occurred in the reporting period.

Orbit	Date	Entry - UTC	Level	Entry Type	ID Content/Transition	Mode	Remark
14887	04-JAN-2005	2005.004.03.40.06.345	Instrument	COMPLEMENTARY FAILURES	---	Heater	SDPU_FRAME_FAULT_ON_RESET_SENT (problems on communication link betw een ICU and SDPU, fault indication 396)
15152	22-JAN-2005	2005.022.14.36.19.404	Instrument	COMPLEMENTARY FAILURES	---	Measurement	STATE TRANS OVERDUE (t / l setup delayed by 10 counts, fault indication 886)
15205	26-JAN-2005	2005.026.08.42.36.575	Instrument	COMPLEMENTARY FAILURES	---	Measurement	PMTC_FRAME_FAULT_ON_RESEI_SENT (problems on communication link betw een ICU and PMTC, fault indication 444)
15590	22-F-B-2005	2005.053.05.57.32.495	Instrument	HK PARAMEITR LIIIITE EXCEEDIING	53 (10260)	MEASUREMENT	SDPC Warn 11 OB-Monitor
15590	22-FEB-2005	2005.053.05.57.35.448	Instrument	HK PARAMEIERLIMIT EXCE\#IING	53 (10260)	MEASUREMENT	SDPC Warn 1 OB-Monitor
15934	18-MAR-2005	2005.077.06.47.14.873	Instrument	HK PARAMETERLIMTE ECCEEIING	86 (10107)	MEASUREMENT	State 57 (mop02)
15935	18-MAR-2005	2005.077.08.27.45.857	Instrument	HK PARAMETERLIMITEXCEHING	86 (10107)	MEASUREMENT	State 57 (mop02)
15936	18-MAR-2005	2005.077.10.08.16.736	Instrument	HK PARAMEIER LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
15937	18-MAR-2005	2005.077.11.48.47.716	Instrument	HK PARAMEIER LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
15938	18-MAR-2005	2005.077.13.29.18.798	Instrument	HK PARAMETURLIMITEXCEHING	86 (10107)	MEASUREMENT	State 57 (mop02)
15939	18-MAR-2005	2005.077.15.09.48.668	Instrument	HK PARAMEIERLIMIT EXCEDING	86 (10107)	MEASUREMENT	State 57 (mopo2)
15940	18-MAR-2005	2005.077.16.50.20.649	Instrument	HK PARAMEIER LIMIT EXCEHING	86 (10107)	MEASUREMENT	State 57 (mopo2)
15941	18-MAR-2005	2005.077.18.30.50.633	Instrument	HK PARAMETERLIMIT EXCEDIING	86 (10107)	MEASUREMENT	State 56 (mop01)
15941	18-MAR-2005	2005.077.18.31.48.672	Instrument	HK PARAMEIR LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 54 (mos01)
15942	18-MAR-2005	2005.077.20.11.21.589	Instrument	HK PARAMEIERLIMITEXCEDIING	86 (10107)	MEASUREMENT	State 57 (mop02)
15943	18-MAR-2005	2005.077.21.51.52.589	Instrument	HK PARAMETERLIMIT EXCE\#IING	86 (10107)	MEASUREMENT	State 57 (mop02)
16361	17-APR-2005	2005.107.02.41.21.331	Instrument	HK PARAMETER LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
16362	17-APR-2005	2005.107.04.21.49.335	Instrument	HK PARAMETERLIMITEXCEHING	86 (10107)	MEASUREMENT	State 57 (mop02)
16363	17-APR-2005	2005.107.06.02.17.261	Instrument	HK PARAMETERLIMTE EXCEHIING	86 (10107)	MEASUREMENT	State 57 (mop02)
16364	17-APR-2005	2005.107.07.42.45.295	Instrument	HK PARAMEIER LIMIT EXCE\#IING	86 (10107)	MEASUREMENT	State 57 (mop02)
16364	17-APR-2005	2005.107.07.42.46.217	Instrument	HK PARAMETERLIMTE EXCEHDING	94 (10119)	MEASUREMENT	ASM control difference due to state 57 w arning
16365	17-APR-2005	2005.107.09.23.13.264	Instrument	HK PARAMETERLIMITE ECEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
16366	17-APR-2005	2005.107.11.03.40.342	Instrument	HK PARAMETERLIMTE EXCEHING	86 (10107)	MEASUREMENT	State 57 (mop02)
16366	17-APR-2005	2005.107.11.03.54.303	Instrument	HK PARAMETERLIMTT EXC	86 (10107)	MEASUREMENT	State 56 (mop01)
16366	17-APR-2005	2005.107.11.03.54.307	Instrument	HK PARAMEIERLIMIT EXCEEDING	94 (10119)	MEASUREMENT	ASM control difference due to state 57 w arning
16367	17-APR-2005	2005.107.12.44.08.158	Instrument	HK PARAMETERLIMTE EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
16367	17-APR-2005	2005.107.12.44.09.177	Instrument	HK PARAMEITER LIMITH EXC	94 (10119)	MEASUREMENT	ASM control difference due to state 57 w arning
16368	17-APR-2005	2005.107.14.24.37.087	Instrument	HK PARAMEIER LIMIT EXCEFDING	86 (10107)	MEASUREMENT	State 57 (mop02)
16471	24-APR-2005	2005.114.18.50.18.247	Instrument	HK PARAMEIER LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)
16471	24-APR-2005	2005.114.18.50.19.266	Instrument	HK PARAMETER LIMIT EXCEEDING	100 (10129)	MEASUREMENT	ESM control difference due to state 57 w arning
16471	24-APR-2005	2005.114.18.50.21.305	Instrument	HK PARAMEITERLIMITTEXCE\#IING	94 (10119)	MEASUREMENT	ASM control difference due to state 57 w arning
16471	24-APR-2005	2005.114.18.50.37.212	Instrument	HK PARAMEIER LIMIT EXCEEDING	86 (10107)	MEASUREMENT	State 57 (mop02)

Table 3-3: Instrument anomalies
The only anomalies detected were complementary failures or HK parameter limit exceedings leading to Corrective Actions (CA) 0 or 9, i.e. the instrument continued
operations. Most of them are attributed to lunar occultations. Although these measurements have only been scheduled when moonrise occurred beyond the terminator, i.e. on the nightside of Earth, the observing conditions could have been such that the Sun Follower (SF) was confused by the partially illuminated atmosphere. This caused the SF not to successfully acquire and track the lunar disk leading to the observed limit execeedings and anomaly entries in the report area.

Instrument unavailability

The instrument was unavailable for a total of 28 orbits. All unavailabilities were not anomaly driven but planned.

Unavailability					
Orbit		UTC		Event	Remark
Start	Stop	Start	Stop		
14882	14898	$\begin{gathered} \hline \hline \text { 03-Jan-2005 } \\ \text { 19:10:10 } \end{gathered}$	$\begin{gathered} \hline \hline \text { 04-Jan-2005 } \\ 20: 44: 20 \end{gathered}$	transfer to STANDBY	planned post-decontamination activity
14930	14936	$\begin{gathered} \text { 07-Jan-2005 } \\ 02: 30: 18 \end{gathered}$	$\begin{gathered} \text { 07-Jan-2005 } \\ 13: 43: 45 \end{gathered}$	transfer to MEASUREMENT/IDLE	OCM
15916	15924	$\begin{gathered} \text { 17-Mar-2005 } \\ 00: 44: 21 \end{gathered}$	$\begin{gathered} \text { 17-Mar-2005 } \\ 14: 08: 18 \end{gathered}$	transfer to MEASUREMENT/IDLE	OCM

Table 3-4: Instrument unavailabilities

3.1.4 Performance Monitoring - System (SOST-DLR)

Detector temperatures

Detector temperatures are monitored according to the requirements of the IOM procedure PIN-401. It requests to ensure that the average temperature per orbit remains within the specified limits. The average temperature per orbit is determined from the HK telemetry parameters I0016 (Detector 1), I0021 (Detector 2), I0026 (Detector 3), I0031 (Detector 4), I0036 (Detector (5), I0041 (Detector 6), I0046 (Detector 7) and I0051 (Detector 8). Fig. 3-4 displays the temperatures of all 8 detectors. Colour coding is as on the operational monitoring website, i.e. data from orbits with HK telemetry coverage $>90 \%$ are shown in red, for $<90 \%$ in green. Minimum/maximum values per orbit are indicated as vertical bars. The temperature limits of each detector are shown as horizontal lines.

At the start of the curve, temperatures approach nominal values from elevated levels at the end of the NNDEC cool-down phase. Then detectors cooled in the short period of planned STANDBY mode and returned from low levels.

OBM temperatures

OBM temperatures are monitored according to the requirements of the IOM procedure PIN-402. It requests to ensure that the average temperature per orbit remains within the
esa
specified limits. The average OBM temperature per orbit is determined from the HK telemetry parameters I0772D (Limb Sensor) and I0773D (Nadir Sensor) according to

$$
T_{-} O B M=0.5 \times\left(T_{-} L I M B+T_{-} N A D I R\right)-2.2{ }^{\circ} \mathrm{C}
$$

In addition, PIN-402 requires to monitor the power settings of the Active Thermal Control heaters. They are given by the HK telemetry parameters I0778D (ATC Limb), I0799D (ATC Nadir) and I0800D (ATC Rad A). Temperatures and ATC heater powers are given in fig. 3-5 and 3-6. Colour coding is as in fig. 3-4.

At the start of the curve, the end of the NNDEC cool-down and later on the short STANDBY period cause temperatures to be higher, respectively lower, than nominal for a few orbits.

PMD ADC status

The status of the PMD ADC is monitored according to the requirements of the IOM procedure PIN-404. It requests to ensure that no glitches occur caused by an SEU. The status of the PMD ADC is derived from the HK telemetry parameters I0009 (PMD Temperature) and I0012 (PMD Analogue Supply Voltage).

No PMD ADC glitches have been detected.

Fig. 3-4: Detector temperatures

Fig. 3-5: OBM temperatures (top: derived OBM, middle: limb sensor, bottom: nadir sensor)

Fig. 3-6: ATC heater power (top: ATC limb, middle: ATC nadir, bottom: ATC Rad A)

LLI status

Life Limited Items are monitored based on analysis of the

- OSDF: This yields a predicted LLI usage.
- Report format: This results in actually used LLI switches or cycles. No WLS/SLS burning times can be derived thereof.

In addition, the in-flight usage of the cryogenic heat pipe is recorded. This subsystem has a limited number of cycles. Each decontamination increases the accumulated number of cycles by 1 .

At the end of the reporting period the fractional usage of the LLI relative to the allowed in-flight budget was

- NDFM: 0.44
- APSM: 0.39
- NCWM (sub-solar port): 0.45
- WLS (switches): 0.10
- WLS (burning time): 0.20
- SLS (switches): 0.03
- SLS (burning time): 0.01

How the relative LLI usage has accumulated since launch can be seen in fig. 3-7. 'EOL' assumes a total mission lifetime of 0.5 years of Commissioning Phase and 4.5 years of routine operations.

Fig. 3-7: Relative usage of LLIs. 'EOL' is derived for the currently specified mission lifetime.
The number of cryogenic heatpipe cycles increased by ' 1 ' to 15 at the start of the reporting period (NNDEC finished). This amounts to 38% of the allowed in-flight budget.

Time reference

The times quoted in all planning files refer to the reference orbit. Since the actual orbit differs from the reference orbit (e.g. orbit drift), the times given w.r.t. the reference orbit also do not reflect exactly the actual absolute times of events along the orbit (e.g. ANX, sunrise, sub-solar, moonrise, eclipse). The requirements for orbit maintenance may result in time differences of usually $< \pm 10 \mathrm{sec}$. In some cases this value may even reach $\pm 1 \mathrm{~min}$, however.
SOST monitors how the reference time deviates from the actual time. This is done by using the predicted time which comes very close to the actual $=$ restituted time. If the predicted times are delayed w.r.t. the reference orbit, then the difference predicted reference time is $>0 \mathrm{sec}$; in the other case it is $<0 \mathrm{sec}$.

Fig. 3-8 displays the time difference predicted - reference. Orbit manouevres cause distinct discontinuities.

Fig. 3-8: Time difference between predicted and reference time.

3.1.5 Performance Monitoring - Light Path (SOST-IFE)

One part of the SOST long-term monitoring activities is the trend analysis of measurements with the internal White Light Source (WLS) and of observations of the unobscured Sun above the atmosphere. In order to monitor the different SCIAMACHY light paths solar measurements are taken in various viewing geometries: In limb/occultation geometry (via ASM and ESM mirrors), in nadir geometry (via the ESM mirror through the subsolar port), and via the so-called calibration light path involving the ASM mirror and the ESM diffuser.
SCIAMACHY long-term monitoring comprises a regular analysis of these measurements.

The plots displayed in Fig. 3-9 show results of these monitoring activities for the time interval January to April 2005.
All measured signals have been averaged over the entire channel and then divided by the corresponding measurement at a reference time (currently 2 August 2002, at about orbit 2200), yielding an effective instrument throughput for the different light paths.

The timing of subsolar measurements before 30 November 2002 (about orbit 3922) did not consider the known yaw misalignment of SCIAMACHY on ENVISAT. Therefore all
esa
subsolar measurements after 30 November 2002 have been referred to orbit 4519 (10 January 2003, just after a long decontamination phase).
Note that measurements performed during times of reduced instrument performance (e.g. switch-offs or decontamination periods) have been omitted.

The results presented in Fig. 3-9 are based on the analysis of Level 0 data, which have been corrected for dead/bad pixels, dark current (fixed value from August 2002), scan angle dependencies, quantum efficiency changes, and the seasonally varying distance to the Sun. Additional calibration steps have not been performed, like for example a straylight correction. Therefore, variations smaller than about 1% require careful investigation.

The light path monitoring results presented in this section may be regarded as a first step towards spectrally resolved monitoring factors (m-factors) which will be produced based on Level 1b data.
Daily updated light path monitoring results can be found on the SOST or IUP web site (http://www.iup.physik.uni-bremen.de/sciamachy/LTM/LTM.html).

SCIAMACHY Light Path Monitoring Results, Channel 1

scIAMACHY Light Path Monitoring Results, Channel

SCIAMACHY Light Path Monitoring Results, Channel 5

SCIAMACHY Light Path Monitoring Results, Channel

SCIAMACHY Light Path Menitoring Results, Channal 2

SCIAMACHY Lght Path Monitoring Results, Channel 4

SCIAMACHY Light Path Monitoring Results, Channel 8

Fig. 3-9: Light path monitoring results Jan 2005 to Apr 2005.
esa

The following specific features can be identified from the light path monitoring results during the time interval of this report:

- No data plotted until 4 January 2005 (orbit 14900) due to non-nominal decontamination.
- The small degradation in the UV (channels $1 \& 2$) continues; the degradation of the calibration light path is in channel 1 smaller than for other light paths, indicating that the ESM diffuser degrades less than the ESM mirror.
- Channels 3 to 6 remain radiometricly stable. The apparent throughput variations in channel 6 (increase for the limb light path, decrease for the ESM diffuser light path) are caused by an up to now uncorrected seasonal variation (probably due to insufficient calibration).
- The channel 7 throughput remains rather stable after the decontamination whereas the channel 8 throughput is reduced by 20% due to icing.

3.1.6 Problem Report Status (DLR-BO)

In the reporting period no new problem report has been issued. None of the existing problem reports was closed.

4.1 Downlink/Acquisition Performance

Due to a hardware problem of the demodulator in the ESRIN acquisition chain, (start on $22^{\text {nd }}$ of January 2005) PDHS-E products were of bad quality or missing. A first on-site intervention was performed on $02-\mathrm{Feb}-2005$ to $03-\mathrm{Feb}-2005$. Since then until the evening of $4^{\text {th }}$ of February the data acquired on the LR chain was generally of nominal quality. After that date the LR demodulator failed again, thus there has been no low rate acquisition until the $7^{\text {th }}$ of February. Since then all acquired data are of nominal quality. Affected orbits (PDHS-E only): 15198-15379
For SCIAMACHY complete orbits are either missing or orbits contain many small gaps; the Fig. 4-1 shows the GANTT chart for days 23 January - 15 February 2005, Level1b and Level0. The first two rows show the GANTT chart for Level 0 and Level 1 data inventoried into the ground segment for each calendar day that is listed above. Missing data are represented by the bars PA_SCI_NL__0P/missing/ PDS_UNKNOWN_FAILURE and PA_SCI_NL_1P/missing/ PDS_UNKNOWN_FAILURE. They are occurring especially on days $25,27,28,29,30$, 31 January, 01, 02, 05, 06, 07, 08 February 2005. Days before and afterwards show significantly less missing data in the GANTT chart.

Fig. 4-1 GANTT chart 23-Jan-2005 - 15-Feb-2005, showing the above anomaly.

4.2 Statistics on unconsolidated data (SCI_NL__0P, SCI_NL_1P)

This paragraph reports the availability of NRT data on a monthly basis. The statistics are based on Level 0 data and Level 1 data inventoried in the ground segment tool. Unavailability periods due to instrument anomalies or Satellite switch-offs are excluded. The gaps considered are only interfile gaps.

Fig. 4-2: Statistics on available unconsolidated Level 0 and Level 1 products

4.3 Statistics on consolidated data

In this paragraph statistics on consolidated data products L 0 and L 1 are presented.

Fig. 4-3: Statistics on consolidated Level 0 and Level 1 products

4.4 Statistics on reprocessed data

Information about statistics on SCIAMACHY reprocessed data is made available by DPAC.

Products from the time interval July 2002 to May 2004 (corresponding to cycles 7 -26, each cycle consisting of 501 orbits) are being reprocessed with IPF version 5.04 on consolidated L0/L1 data using the re-processed Auxiliary files (LK1, SU1, SP1, PE1). Data after that time interval have already been processed operationally with IPF 5.04
ssue i revisioli u
version and Auxiliary files had been processed operationally since then (the last status for the statistics in Fig. 4-4 is from 24/05/2005).
Data sets that lie in non-nominal decontamination periods are not re-processed to L2 products as the science data are not reliable.

Fig. 4-4: DPAC statistics on reprocessed data

5 LEVEL 1 PRODUCT QUALITY MONITORING

5.1 Processor Configuration

5.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 1 data is 5.04. The corresponding product specification is PO-RS-MDA-GS-2009_15_3H. The
disclaimer
at
http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_NL_1P_Disclaimers.pdf describes known artefacts.

Date	Version
21-AUG-2004	IPF version 5.04 has been activated from orbit 12942 at: PDHS-K
20-AUG-2004	IPF version 5.04 has been activated from 12750 (+ reprocessing of some older products) at: LRAC
16 -AUG-2004	IPF version 5.04 has been activated from orbit 12823 at: PDHS-E

Description of changes
No algorithm specification changes were implemented, but two algorithm implementation errors have been corrected. In addition, code adaptations have been performed to resolve performance problems encountered during reprocessing. The list of modifications is as follows:

- An incorrect polarisation-

12-AUG-2004	IPF version 5.04 has been activated 12879 reprocessing of some older products)at: DPAC	ratio calculation has been corrected, to remove radiance discrepancies up to 1% between prototype and operational processor. - Memory leaks have been detected and eliminated - Two modifications have been performed to avoid level 1B processing crashes
31-MAR-2004	IPF version 5.01 has been activated at: DPAC	
24-MAR-2004	IPF version 5.01 has been activated at: PDHS-E PDHS-K LRAC	

Tab. 5-1: Processor Version and main changes

5.1.2 Auxiliary Data Files

For operation of the SCIAMACHY level 1 processor a set of Auxiliary files as input is required.
These Auxiliary files consist of a subset that usually changes only in correspondence with a new IPF version, namely the Initialisation file (SCI_LI1_AX), the Key Data File (SCI_KD1_AX). In addition there is the m-factor file (SCI_MF1_AX), which shall describe the degradation of the instrument during its stay in orbit (note that the m-factor file has not been changed so far).

Another subset of Auxiliary Files are the In-flight calibration Data files which are generated when calibration measurements are included in the set of level 0 data to be processed. Four types of In-flight calibration Auxiliary files exist:

- Leakage Current Calibration (SCI_LK1_AX - updated on orbital basis)
- Solar Reference Spectrum (SCI_SU1_AX - updated on daily basis)
- Spectral Calibration Parameters (SCI_SP1_AX - updated on a monthly basis)
- Pixel-to-Pixel Gain and Etalon Parameters (SCI_PE1_AX - updated on a monthly basis)

Since 04 May 2004 LK1 Auxiliary Files (Leakage Current Calibration) were processed operationally by the IECF. A SCI_LK1_AX is generated about every orbit (if measurements do not lie in the SAA area or orbit phase constraints occur).

SU1 Auxiliary Files were operationally processed starting from day 08 May 2004, a new SCI_SU1_AX file is generated every day with a validity time of two weeks.
PE1 and SP1 Auxiliary files are generated once per month with measurements of the monthly calibration orbits.
The table in Appendix A gives an overview about the Auxiliary files for the reporting period November - December 2004.
Fig: 5.1 shows statistics of the SU1 and LK1 ADFs generated operationally with the IECF. It has to be noted that unavailability periods are excluded from statistics. Generation of SU1 ADFs from August to October was 100\%. In May 2004 two SU1 ADFs, in June three ADFs and in July three ADFs were missing, mainly due to hardware problems.
The LK1 ADF statistic is calculated by dividing the number of all LK1 ADFs by number of all available (to IECF) level 1 orbits. In average ADFs are available about 58% per month. The statistic does not take into account SAA and orbit phase constraints. Special analysis showed that only 6-8 orbits per day can be used for LK1 ADF processing, and therefore the performance is at $80-100 \%$.

Fig. 5-1: Statistics on LK1 and SU1 processing

5.1.3 Spectral Performance

Future reports will contain analyses of spectral performance.

5.1.4 Radiometric Performance

Future reports will contain analyses of spectral performance.

5.1.5 Other Calibration Results

5.1.5.1 SMR analysis

The IECF generates daily SU1 Auxiliary Files, that contain new sun mean reference spectra for the different possible modes (e.g., subsolar, ESM diffuser, occultation, etc).
Fig. 5-2 to Fig. 5-9 show the ratios of SMR spectra derived from calibrated SMR/ESM during the month January - April 2005. The ratios were determined by dividing the spectra of the beginning of each month to a set of days during each month. All ratios are not corrected for variation of distance earth/sun.
In detail the spectra used for the ratios of each month are the following:

- January 2005

Reference SMR - 06 Jan 2005
SMR used for ratios: $07,08,09,10,11,13,14,17,18,19,21,24,25,26,27,28$, 29, 30, 31 Jan 2005

- February 2005

Reference SMR - 01 Feb 2005
SMR used for ratios: $02,03,04,05,06,07,14,21,28$ Feb 2005

- March 2005

Reference SMR - 01 March 2005
SMR used for ratios: $02,03,04,05,06,07,14,21,31$

- April 2005

Reference SMR - 02 April 2005
SMR used for ratios: $03,04,05,06,07,08,15,22,30$
The analysis of January is impacted by the non-nominal decontamination phase that was completed on 02 January, however the SMR spectrum taken on 06 January was still under instable thermal condition.
The overall changes lie between 1-2 \% during one month (besides January). In channel 1 around pixel 550 some features can be noticed as well as in channel 2 at pixel 840. The reason for these features need to be investigated. A possible explanation could be a solar variability causing Fraunhofer lines with different intensities. Generally a spectral feature could have significant impact on the product quality, especially when the affected spectral parts are used for DOAS retrieval.

The IR channels are impacted by more noise than the UV-visible channels.
January and February ratios of SMRs show some strong etalon like features, especially in channel 3. First investigation using level 0 data, showed that this is an artefact and no etalon structure, as the ratios in the Figures presented here were performed using wavelength calibrated data.

Fig. 5-10 shows a SMR ratio on a long term trend dividing the ESM spectra from days 18-Jul-2002 (first SMR spectrum since BOL) and 30-Apr-2005. As also here no correction for sun/earth distance was performed, a better analysis in future reports shall be considered by taking a reference spectrum of the same calendar day year 2002/2003.

SCIAMACHY 4-MI
esa
ratio of smrs as a function of pixel

Fig. 5-2: SMR ratios per detector channel 1-4 (changes during January 2005)
ratic of smrs as a function of pixel

Fig. 5-3: SMR ratios per detector channel 5-8 (changes during January 2005)
\&
DLR
ratio of smrs as a function of pixel, February 2005

Fig. 5-4: SMR ratios per detector channel 1-4 (changes during February 2005)

Fig. 5-5: SMR ratios per detector channel 5-8 (changes during February 2005)
\&
DLR E9
ratio of smrs as a function of pixel, March 2005

Fig. 5-6: SMR ratios per detector channel 1-4 (changes during March 2005)
ratio of smrs as a function of pixel, March 2005

Fig. 5-7: SMR ratios per detector channel 5-8 (changes during March 2005)

SCIAMACHY 4-MI

ratio of smrs as a function of pixel, April 2005

Fig. 5-8: SMR ratios per detector channel 1-4 (changes during April 2005)
ratio of smrs as a function of pixel, April 2005

Fig. 5-9: SMR ratios per detector channel 5-8 (changes during April 2005)

Fig. 5-10: SMR ratios per detector channel on Long Term Trend

5.1.5.2 LK1 analysis

On an orbital basis a leakage current calibration is performed, if measurement data do not lie in the South Atlantic Anomaly region.
In Fig. 5-11 to Fig. 5-18 the leakage constant part FPN (fixed pattern noise) of the LK1 ADFs are analysed by determining the ratios of the FPN of each month with a time distance of one orbit, one day, one week, two weeks, three weeks and a month.
For channels 1-5 and the first part of channel 6, during up to three weeks nearly no changes can be noticed. The IR channels show a lot of noise. Here an improvement is foreseen with a new processor version, where the time dependent part of the leakage current will be considered.
For the month of March, an "anomaly" can be observed in the three week ratio, which looks very noisy. The origin of this dark current behavior will be investigated deeper. The dark current anomaly is only visible for channel 3 , but not in 1,2 or 4 .

DLR E

LK1 ADF analysis, ratios of fpn const, January 2005

Fig. 5-11: dark current ratios (constant part) channel 1-4 during January 2005, Reference Spectrum used: Orbit 14876, 03-Jan-2005

LK1 ADF analysis, ratias of fpn const, January 2005

Fig. 5-12: dark current ratios (constant part) channel 5-8 during January 2005, Reference Spectrum used: Orbit 14876, 03-Jan-2005

LK1 ADF analysis, ratias of fpn const, February 2005

Fig. 5-13: dark current ratios (constant part) channel 1-4 during February 2005, Reference Spectrum used: Orbit 15291, 01-Feb-2005

LK1 ADF analysis, ratias of fpn const, February 2005

Fig. 5-14: dark current ratios (constant part) channel 5-8 during February 2005, Reference Spectrum used: Orbit 15291, 01-Feb-2005

SCIAMACHY 4-MI

LK1 ADF analysis, ratios of fpn const, March 2005

Fig. 5-15: dark current ratios (constant part) channel 1-4 during March 2005, Reference Spectrum used: Orbit 15692, 01-Mar-2005

LK1 ADF analysis, ratios of fpn const, March 2005

Fig. 5-16: dark current ratios (constant part) channel 5-8 during March 2005, Reference Spectrum used: Orbit 15692, 01-Mar-2005

SCIAMACHY 4-MI

LK1 ADF analysis, ratios of fpn const, April 2005

Fig. 5-17: dark current ratios (constant part) channel 1-4 during April 2005, Reference Spectrum used: Orbit 16164, 03-Apr-2005

LK1 ADF analysis, ratias of fpn const, April 2005

Fig. 5-18: dark current ratios (constant part) channel 5-8 during April 2005, Reference Spectrum used: Orbit 16164, 03-Apr-2005
esa

5.1.6 Pointing Performance

The in-orbit ENVISAT pointing characterization in view of a new restituted attitude file delivered by ESOC (AOCS data) was assessed and results are described in detail in a dedicated technical note ENVISAT Restituted Pitch Assessment, Issue 2, ENVI-SPPA-EOPG-TN-05-0011 (ref. [1]).

The attitude information from AOCS that was used for the analysis consists of the depointing estimates generated by the star trackers.

SCIAMACHY pointing information can be retrieved from Limb scattering observations in the UV-B spectral range with the software tool TRUE (Tangent height Retrieval by UV-B Exploitation), developed by IFE-Bremen (ref. [2]). UV limb radiance profiles at wavelengths shorter than 320 nm exhibit a characteristic radiance peak in the upper stratosphere/lower thermosphere, with the peak altitude being a function of the wavelength. The limb radiance peak is called 'knee'. If the atmospheric ozone profile is known, then the knee-altitude as well as the shape of the limb radiance profiles around the knee can be used to retrieve pointing information. The data analysis is restricted to the tropical range (latitudes between $20^{\circ} \mathrm{S}-20^{\circ} \mathrm{N}$), where the ozone layer is fairly constant and horizontally more homogeneous than at mid-latitudes, as the TRUE retrieval depends on a-priori ozone profile.
In the above mentioned technical note a long term trend comparison of SCIAMACHY Pitch values to AOCS data (averaged over the tropical zone) was performed. The result is shown in Fig. 5-19.

Fig. 5-19: Long Term Trend Pitch comparison between SCIAMACHY and AOCS
As first conclusion it was found that SCIAMACHY deviates from AOCS with a bias that is not yet clarified. There is as well a constant slope deviating from 1. Otherwise, the long-term trend correlates well.

As these results have insufficient statistical relevance, the pointing analysis will be expanded. Besides using a larger AOCS dataset, AOCS harmonic coefficients instead of individual estimator measurements will be used, which shall reduce the standard deviation and eliminate outliers. Preliminary results of this analysis show that the slope is close to $1(+/-20 \%)$ and a bias is about 16.8 mdeg .

With the results of this study an initial implementation into the SCIAMACHY prototype is foreseen in June 2005.

6 LEVEL 2 NRT PRODUCT QUALITY MONITORING

6.1 Processor Configuration

6.1.1 Version

The current IPF version used for processing (and re-processing) of SCIAMACHY level 2 data is 5.04 . The according product specification is PO-RS-MDA-GS-2009_15_3H. The disclaimer http://envisat.esa.int/dataproducts/availability/disclaimers/SCI NL_2P Disclaimers.pdf describes known artefacts. Table 6.1 shows the implementation dates of the IPF at the different PDS processing centres and the main modifications implemented.

Date	Version	Description of changes
21-AUG-2004	IPF version 5.04 has been activated from orbit 12942 at: PDHS-K	No algorithm specification changes were implemented, but two algorithm implementation errors have been corrected. In addition, code adaptations have been performed to resolve performance problems encountered during reprocessing. The list of modifications is as follows:
20-AUG-2004	IPF version 5.04 has been activated from 12750 (+ reprocessing of some older products) at: LRAC	
16-AUG-2004	IPF version 5.04 has been activated from orbit 12823 at: PDHS-E	

12-AUG-2004	IPF version 5.04 has been activated 12879 reprocessing of some older products)at: DPAC	- The incorrect handling of the season index 4 has been corrected. - An incorrect polarisation-ratio calculation has been corrected, to remove radiance discrepancies up to 1% between prototype and operational processor. - Memory leaks have been detected and eliminated - An adaptation has been implemented to allow co-existence with the initialisation file used by the Off-Line processor
31-MAR-2004	IPF version 5.01 has been activated at: DPAC	- description for cloud MDS updated - minor changes in MPI
24-MAR-2004	IPF version 5.01 has been activated at: PDHS-E PDHS-K LRAC	and USA climatology description - latitude grids fixed - list of surface types fixed, note about vegetation index added - $\mathrm{O}_{3} \mathrm{FM}$ formula fixed sizes of SCIA FM spectra fixed latitude zones fixed - solar zenith angle grid fixed

Tab. 6-1: Level 2 Processor Configuration

6.1.2 Auxiliary Data Files

Auxiliary Files being used as input for SCI_NL__2P products are listed in table 6-2. These ADF files are generally not changed.

SCI_FM2_AXVIEC20040309	092553_19990101_000000_20991231_235959
SCI BL2 AXVIEC20020220	093709_20020101 000000_20200101 000000
SCI CC2_AXVIEC20020220	094004_20020101_000000_20200101_000000
SCI_CL2_AXVIEC20020220	_094214_20020101_000000_20200101_000000
SCI_CS2_AXVIEC20020220	-094417_20020101_000000_20200101_000000
SCI_MF2_AXVIEC20040309	_093236_19990101_000000_20991231_235959
SCI PF2 AXVIEC20020220	1004502002010100000020200101000000
SCI_PR2_AXVIEC20020220	_100642_20020101_000000_20200101_000000
SCI_RC2_AXVIEC20020220	-100912_20020101_000000_20200101_000000
SCI_UC2_AXVIEC20040309	_092027_19990101_000000_20991231_235959
SCI_SF2_AXVIEC20020220	101039_20020101_000000_20200101_000000
SCI_LI2_AXVIEC20040308	170000_20020101_000000_20200101_000000

Tab. 6-2: Level 2 Auxiliary Files

6.2 O_{3} consistency checking

Future reports will contain information on this issue.

6.3 NO_{2} consistency checking

NO_{2} vertical column density (VCD) values of one month were averaged using QUADAS, filtering those data where the VCD flags are 0 . Diurnal variations have not been corrected (no model applied). Fig. 6-1, Fig. 6-2, Fig. 6-3, Fig. 6-6 are aimed at processing consistency checking and are not intended for geophysical interpretation.
Generally, high concentration of NO_{2} is expected over industrial regions, as over North America, especially the East coast, over central Europe, China and South Africa.

6.3.1 NO_{2} VCD map January 2005

High NO_{2} VCD values at high latitudes as over Ural region and West Siberia need to be reviewed, as well as the high values at the South pole.
Remark with respect to data analysis:
as the ingestion of the VCD quality flag into the database had not yet been performed for all January data, a different method was used for filtering "bad" data. For the January VCD map, data where used, where VCD was >0.

Fig. 6-1: NO_{2} VCD world map 03 -31 January 2005 - monthly average

6.3.2 NO_{2} VCD map February 2005

As for the January 2005 map, high NO_{2} VCD values at high latitudes as over Ural region and West Siberia need to be reviewed, as well as the high values at the South pole.

Fig. 6-2: NO_{2} VCD world map 01-28 February 2005 - monthly average

6.3.3 NO_{2} VCD map March 2005

For calculation of the monthly mean values of NO_{2}, the data from days 30 and 31 March were discarded, due to an anomaly in the NRT data, which is reported in chapter 6.3.3.1

Fig. 6-3: NO_{2} VCD world map 01-29 March 2005 - monthly average

6.3.3.1 NO_{2} VCD anomalous values during 30-31 March 2005

During days 30 and 31 March anomalous high NO_{2} VCD values were noticed in the latitude range 40-60 degree. Fig. 6-4 shows the NO_{2} world map for days 29 March (with a nominal NO_{2} distribution) and 30 March (with anomalous high values in red) in comparison. During daily systematic monitoring the anomalous values were appearing only in NRT products and not in the Level 2 Offline product. Neither could these values be reproduced with the prototype. Therefore an Anomaly report was raised against the PDS. Fig. 6-5 shows the VCD values as a sequence of time between 28-Mar-2005 and 04-Apr-2005. In average the values are 2-3 times higher than nominally.
The product disclaimer will be updated accordingly.

SCI-NL 2P NRT data manitoring

Fig. 6-4: NO_{2} VCD world maps 29 March 2005 and 30 March 2005

Fig. 6-5: NO_{2} VCD values as sequence of time 28 March 2005 to 04 April 2005

6.3.4 NO_{2} VCD map April 2005

Also for the April world map showing the distribution of mean values of $\mathrm{NO}_{2} \mathrm{VCD}$, a review is needed to understand unphysical values at high latitudes.

Fig. 6-6: NO_{2} VCD world map 01-30 April 2005 - monthly average

7 LEVEL 2 OFFLINE PRODUCT QUALITY MONITORING

7.1 Processor Configuration

7.1.1 Version

In January 2005 the SCIAMACHY Level 2 Offline product SCI_OL__2P was released, data are generated with processor version 2.5 .
The according product specification is PO-RS-MDA-GS-2009_15_3H. The disclaimer at http://envisat.esa.int/dataproducts/availability/disclaimers/SCI_OL_2P_Disclaimers.pdf describes known artefacts.
SCI_OL__2P products contain geolocated vertical column amounts of $\mathrm{O}_{3}, \mathrm{NO}_{2}$ Nadir measurements as well as stratospheric Limb profiles of $\mathrm{O}_{3}, \mathrm{NO}_{2}$.

7.1.2 Auxiliary Data Files

Input for Level 2 Offline processing is the Initialization File SCI_IN_AXNPDE20041221_112322_000000000000_000000 _000000_0000.N1, that usually is changed only in case of a processor upgrade.

7.1.3 Monitoring results

In future reports results on Limb and Nadir products will be presented here.

8 VALIDATION ACTIVITIES AND RESULTS

8.1 SCIAMACHY-ECMWF Comparisons using SCI_RV $2 P$

8.1.1 Summary of the ECMWF SCIAMACHY monthly report for January 2005

- SCIAMACHY data quality stable from 10 January onwards.
- Improvement on the agreement between SCIAMACHY and ECMWF ozone values.
- Decrease of the (negative) mean departures in the global means as compared to December 2004 in particular after 10 January.
- SCIAMACHY data about 10 DU lower in the global means than ECMWF ozone values after 10 January.

- Unrealistically large SCIAMACHY ozone values in the high latitudes have disappeared after the end of the decontamination activities.
- The monitoring report was produced with the operational ECMWF model, CY28R4.

The full report is available at http://earth.esa.int/pcs/envisat/tmp_calval_res/
Below see the ECMWF plot on SCIAMACHY mean observation in DU.

```
STATISTICS FOR OZONE FROM ENVISAT / SCIAMACHY
                        MEAN OBSERVATION [DU]
                                DATA PERIOD = 2005010100-2005013118
        EXP = 0001, LAYER = 01, 0.10-1013.25 HPA
    Min: 207.5 Max: 705.25 Mean: 278.26
```


Fig. 8-1: Ozone Mean ECMWF January 2005

8.1.2 Summary of the ECMWF SCIAMACHY monthly report for February 2005

- SCIAMACHY data quality is relatively stable in February.
- SCIAMACHY data about 10 DU lower in the global mean than ECMWF ozone values.
- No SCIAMACHY data during the 0 z cycles between 1 and 8 February.
- No SCIAMACHY data on 3-4 February.
- The monitoring report was produced with the operational ECMWF model, CY28R4.

SCIAMACHY 4-MI
esa
ssue I revisioli 0

STATISTICS FOR OZONE FROM ENVISAT / SCIAMACHY
MEAN OBSERVATION [DU]
DATA PERIOD $=2005020100-2005022818$
EXP $=0001$, LAYER $=01,0.10-1013.25 \mathrm{HPA}$
Min: 217.97 Max: 564.73 Mean: 286.0

Fig. 8-2: Ozone Mean ECMWF February 2005

8.1.3 Summary of the ECMWF SCIAMACHY monthly report for March 2005

- SCIAMACHY data quality stable in March.
- SCIAMACHY data about 10 DU lower in the global mean than ECMWF ozone values.
- No SCIAMACHY data from 5 March to 6 March.
- The monitoring report was produced with the operational ECMWF model, CY28R4.

DLR Nes

```
STATISTICS FOR OZONE FROM ENVISAT / SCIAMACHY
                                    MEAN OBSERVATION [DU]
    DATA PERIOD = 2005030100-2005033118
    EXP = 0001, LAYER = 01, 0.10-1013.25 HPA
    Min: 220.94 Max: 582.05 Mean: 301.3
```


Fig. 8-3: Ozone Mean ECMWF March 2005

8.1.4 Summary of the ECMWF SCIAMACHY monthly report for April 2005

- SCIAMACHY data quality stable in April.
- SCIAMACHY data about 5 DU lower in the global mean than ECMWF ozone values.
- Decrease of the standard deviations of SCIAMACHY data at the northern high latitudes.
- On 5 April the operational ECMWF model changed from version CY28R4 to CY29R1.

```
STATISTICS FOR OZONE FROM ENVISAT / SCIAMACHY
MEAN OBSERVATION [DU]
DATA PERIOD \(=2005040100-2005043018\)
EXP \(=0001\), LAYER \(=01,0.10-1013.25 \mathrm{HPA}\)
Min: 222.9 Max: 495.78 Mean: 315.21
```


Fig. 8-4: Ozone Mean ECMWF April 2005

8.2 Statistics from Inter comparison with External Data

Future reports will contain information on this issue.
page 54 of 72

APPENDIX A

Type	ADF Name
PE1_AX	SCI_PE1_AXVIEC20050105_094321_20041216_000000_20900101_000000
	SCI_PE1_AXVIEC20050127_112836_20050123_000000_20900101_000000
SP1_AX	SCI_SP1_AXVIEC20050105_095309_20041216_000000_20050601_000000
	SCI_SP1_AXVIEC20050127_131328_20050123_000000_20050701_000000
	SCI_SP1_AXVIEC20050225_164117_20050222_000000_20050801_000000
	SCI_SP1_AXVIEC20050329_092351_20050323_000000_20050901_000000
	SCI_SP1_AXVIEC20050428_131041_20050424_000000_20051001_000000
SU1_AX	SCI_SU1_AXVIEC20050111_150656_20041226_202330_20050102_213717
	SCI_SU1_AXVIEC20050104_163519_20050101_122251_20050108_214625
	SCI_SU1_AXVIEC20050105_182647_20050102_200026_20050109_211805
	SCI_SU1_AXVIEC20050110_152100_20050106_000000_20050113_223238
	SCI_SU1_AXVIEC20050110_153129_20050107_001221_20050114_015253
	SCI_SU1_AXVIEC20050110_155300_20050103_003703_20050110_021630
	SCI_SU1_AXVIEC20050110_162420_20050104_220116_20050111_233557
	SCI_SU1_AXVIEC20050110_165841_20050105_000000_20050112_212421
	SCI_SU1_AXVIEC20050111_001456_20050108_011956_20050115_212908
	SCI_SU1_AXVIEC20050112_001754_20050109_005630_20050116_223826
	SCI_SU1_AXVIEC20050113_000800_20050110_002452_20050117_015817
	SCI_SU1_AXVIEC20050114_015601_20050111_023915_20050118_213533
	SCI_SU1_AXVIEC20050116_002447_20050113_003030_20050120_020302
	SCI_SU1_AXVIEC20050118_141813_20050114_103640_20050121_113652
	SCI_SU1_AXVIEC20050120_001219_20050117_000428_20050124_013833
	SCI_SU1_AXVIEC20050121_002240_20050118_011324_20050125_211445
	SCI_SU1_AXVIEC20050122_014832_20050119_004144_20050126_021526
	SCI_SU1_AXVIEC20050125_192434_20050121_001602_20050128_115633
	SCI_SU1_AXVIEC20050127_144457_20050115_100512_20050129_112822
	SCI_SU1_AXVIEC20050127_172108_20050124_002132_20050207_120225
	SCI_SU1_AXVIEC20050128_000730_20050125_004715_20050208_022434
	SCI_SU1_AXVIEC20050128_074916_20050112_205813_20050126_224348
	SCI_SU1_AXVIEC20050128_080020_20050116_002904_20050130_020913
	SCI_SU1_AXVIEC20050128_080903_20050120_001003_20050203_014316
	SCI_SU1_AXVIEC20050129_002143_20050126_015321_20050209_220241
	SCI_SU1_AXVIEC20050130_000634_20050127_012248_20050210_213121
	SCI_SU1_AXVIEC20050131_000656_20050128_070827_20050211_131556
	SCI_SU1_AXVIEC20050131_131754_20050122_161848_20050205_175946
	SCI_SU1_AXVIEC20050131_132758_20050123_204701_20050206_215614
	SCI_SU1_AXVIEC20050201_000511_20050129_063548_20050212_210807
	SCI_SU1_AXVIEC20050202_000822_20050130_060501_20050213_213614
	SCI_SU1_AXVIEC20050203_001106_20050131_031222_20050214_114355
	SCI_SU1_AXVIEC20050204_001729_20050201_003209_20050215_010420
	SCI_SU1_AXVIEC20050205_001059_20050202_013342_20050216_214153
	SCI_SU1_AXVIEC20050206_000743_20050203_010919_20050217_114620
	SCI_SU1_AXVIEC20050207_000858_20050204_003737_20050218_021047
	SCI_SU1_AXVIEC20050208_001329_20050205_061554_20050219_122455
	SCI_SU1_AXVIEC20050209_001149_20050206_072747_20050220_115412

SCI_SU1_AXVIEC20050210_002800_20050207_065359_20050221_222428
SCI_SU1_AXVIEC20050211_001443_20050208_001120_20050222_014539
SCI_SU1_AXVIEC20050212_000811_20050209_012012_20050223_115804
SCI_SU1_AXVIEC20050213_000735_20050210_022021_20050224_222940
SCI_SU1_AXVIEC20050214_000712_20050211_001729_20050225_002542
SCI_SU1_AXVIEC20050215_000753_20050212_012537_20050226_120455
SCI-SU1_AXVIEC20050216_-000605_20050213-005353_20050227-223517
SCI_SU1_AXVIEC20050217_001909_20050214_002209_20050228_015628
SCI_SU1_AXVIEC20050218_000623_20050215_013100_20050301_213218
SCI_SU1_AXVIEC20050219_001540_20050216_005916_20050302_224028
SCI_SU1_AXVIEC20050220_001049_20050217_002732_20050303_020258
SCI_SU1_AXVIEC20050221_000643_20050218_013129_20050304_213921
SCI_SU1_AXVIEC20050222_001646_20050219_010439_20050305_114515
SCI_SU1_AXVIEC20050223_000948_20050220_020626_20050306_221716
SCI_SU1_AXVIEC20050224_001138_20050221_013713_20050307_214530
SCI_SU1_AXVIEC20050225_001305_20050222_011001_20050308_211128
SCI_SU1_AXVIEC20050226_000821_20050223_003900_20050309_021124
SCI_SU1_AXVIEC20050227_002228_20050224_000632_20050310_014252
SCI_SU1_AXVIEC20050228_001753_20050225_022439_20050311_211646
SCI_SU1_AXVIEC20050301_-001309_-20050226_022413_20050312_223134
SCI_SU1_AXVIEC20050302_000440_-20050227_001153_20050313_014608
SCI_SU1_AXVIEC20050303_001710_20050228_012043_20050314_120236
SCI_SU1_AXVIEC20050304_000941_20050301_052147_20050315_131130
SCI_SU1_AXVIEC20050305_001600_20050302_001757_20050316_015145
SCI_SU1_AXVIEC20050306_002409_20050303_012603_20050317_213412
SCI_SU1_AXVIEC20050307_003121_20050304_005502_20050318_020544
SCI_SU1_AXVIEC20050308_000547_20050305_063455_20050319_124531
SCI_SU1_AXVIEC20050309_002323_20050306_013123_20050320_213218
SCI_SU1_AXVIEC20050310_002544_20050307_010022_20050321_114341
SCI_SU1_AXVIEC20050312_005144_20050309_013643_20050323_213755
SCI_SU1_AXVIEC20050313_-001732_20050310_035929_20050324_-114932
SCI_SU1_AXVIEC20050314_000758_20050311_003356_20050325_020745
SCI_SU1_AXVIEC20050315_001218_-20050312_014202_20050326_214956
SCI_SU1_AXVIEC20050316_003155_20050313_011100_20050327-211819
SCI_SU1_AXVIEC20050317_001455_20050314_004046_20050328_021322
SCI_SU1_AXVIEC20050318_002736_20050315_000813_20050329_014138
SCI_SU1_AXVIEC20050319_003306_20050316_011619_20050330_212348
SCI_SU1_AXVIEC20050320_002958_20050317_140916_20050331_223323
SCI_SU1_AXVIEC20050321_000817_20050318_001248_20050401_015250
SCI_SU1_AXVIEC20050322_000912_20050319_012054_20050402_212913
SCI_SU1_AXVIEC20050323_004846_20050320_005124_20050403_020218
SCI_SU1_AXVIEC20050324_002326_20050321_001852_20050404_015848
SCI_SU1_AXVIEC20050325_010835_20050322_-012659_20050405_213611
SCI_SU1_AXVIEC20050327_001111_20050324_002413_20050407_015639
SCI_SU1_AXVIEC20050328_000755_20050325_013135_20050408_214018
SCI-SU1_AXVIEC20050329_-000839_20050326_010238_20050409_114609
SCI_SU1_AXVIEC20050330_000440_20050327_050344_20050410_221930
SCI_SU1_AXVIEC20050401_001817_20050329_010850_20050412_115157
SCI_SU1_AXVIEC20050405_130625_20050308_002836_20050322_020233
SCI_SU1_AXVIEC20050405_131639_20050323_100028_20050406_114108
SCI_SU1_AXVIEC20050421_092305_20050328_203218_20050411_214822

	SCI_SU1_AXVIEC20050421_093510_20050330_210928_20050413_222443 SCI SU1 AXVIEC20050421-095014-20050331 000308 20050414_014236 SCI_SU1_AXVIEC20050404_173430_20050401_182726_20050416_130516 SCI_SU1_AXVIEC20050406_101849_20050403_105412_20050417_123510 SCI SU1 AXVIEC20050407-001135 20050404-043057-20050418-212659 SCI_SU1_AXVIEC20050408_000618_20050405_004910_20050419_022446 SCI SU1 AXVIEC20050411-113452 20050408-113651-20050422 224254 SCI SU1 AXVIEC20050412 020002 20050409 $031413 \quad 20050423220950$ SCI_SU1_AXVIEC20050413_001326_20050410-012936_20050424-213730 SCI SU1 AXVIEC20050414 010006 20050411 005956 20050425 114241 SCI_SU1_AXVIEC20050415-001844-20050412-020515-20050426-221707 SCI_SU1_AXVIEC20050416 003245-20050413-043040-20050427-122027 SCI SU1-AXVIEC20050417-003743-20050414-010308-20050428-114849 SCI SU1-AXVIEC20050418-003001-20050415-003124-20050429-021050 SCI SU1 AXVIEC20050419-002434-20050416-013939-20050430-122631 SCI SU1-AXVIEC20050420-010524-20050417-010923-20050501-211916 SCI SU1 AXVIEC20050421-003927-20050418-003900-20050502-021747 SCI SU1-AXVIEC20050421-095952 $20050402^{-} 112445{ }^{-20050416-130516}$ SCI SU1-AXVIEC20050421-101124-20050406-001652 20050420 - 015529 SCI SU1-AXVIEC20050421-102503 $20050407^{-} 201937^{-} 20050421^{-} 213339$ SCI SU1-AXVIEC20050422-003355-20050419-014540-20050503-215614 SCI SU1 AXVIEC20050423-003145-20050420-011520-20050504-212512 SCI SU1-AXVIEC20050424-002747 $20050421^{-} 004549^{-} 20050505^{-} 022206$ SCI SU1-AXVIEC20050425-003743 $20050422^{-} 015113^{-} 20050506^{-} 220053$ SCI SU1 AXVIEC20050426-001611-20050423-012134-20050507 212856 SCI SU1-AXVIEC20050427-002355 20050424-004951-20050508-223951 SCI SU1 AXVIEC20050428-000758 20050425 001808-20050509-015632 SCI SU1 AXVIEC20050429-001242-2005042 - $012740-20050510^{-} 213522$ SCI_SU1-AXVIEC20050430-002816-20050427-005725-20050511-101908 SCI SU1 AXVIEC20050501-003652-20050428-002458-20050512 020402 SCI_SU1_AXVIEC20050502_004146_20050429_013227_20050513_214155 SCI SU1-AXVIEC20050503-030842 $20050430^{-} 021411^{-} 20050514^{-1} 102343$
LK1_AX	SCI_LK1_AXVIEC20050105_183136_20050102_230433_20050110_003909 SCI_LK1_AXVIEC20050105_184343_20050103_021427_20050110_033158 SCI_LK1_AXVIEC20050105_184817_20050103_033123_20050110_051358 SCI_LK1_AXVIEC20050105_085050_20050103_051307_20050110_065455 SCI_LK1_AXVIEC20050105_185432_20050103_080012_20050110_094340 SCI_LK1_AXVIEC20050105_190037_20050103_094143_20050110_112403 SCI_LK1_AXVIEC20050110_144929_20050105_040947_20050112_055139 SCI_LK1_AXVIEC20050110_145302_20050105_073303_20050112_083912 SCI_LK1_AXVIEC20050110_145659-20050105_083728_20050112_101920 SCI_LK1_AXVIEC20050110-141850-20050107_190557_20050114-204630 SCI_LK1_AXVIEC20050110-104455_20050107_215845_20050114-234146 SCI_LK1_AXVIEC20050110_103432_20050107_234733_20050115_012206 SCI_LK1_AXVIEC20050110_111347_20050108_023243_20050115_041644 SCI LK 1-AXVIEC20050110-154602 20050108-041523 20050115-055704 SCI_LK1_AXVIEC20050110_142350_20050108_055559_20050115_070458 SCI_LK1_AXVIEC20050110_143025_20050108_070324_20050115_084450 SCI LK1 AXVIEC20050110-144401-20050108-084304-20050115-102453

SCI_LK1_AXVIEC20050110_151508_20050108_102340_20050115_120636 SCI_LK1_AXVIEC20050110_152933_20050108_120415_20050115_134455 SCI_LK1_AXVIEC20050110_153241_20050108_134259_20050115_152237 SCI_LK1_AXVIEC20050110_153705_20050108_152117_20050115_165949 SCI_LK1-AXVIEC20050110-164135_20050108_183844-20050115-201647 SCI_LK1_AXVIEC20050110_160427_20050108_212731_20050115_231006 SCI_LK1-AXVIEC20050110-161238_20050108-231554-20050116-005029 SCI_LK1-AXVIEC20050110-162239-20050109-020212_20050116-034441 SCI_LK1_AXVIEC20050110_162657_20050109_034343_20050116_052531 SCI_LK1_AXVIEC20050110_164705_20050109_070346_20050116_081242 SCI_LK1_AXVIEC20050110_165401_20050109_081124_20050116_095524 SCI_LK1_AXVIEC20050110_165950_20050109_095351_20050116_113412 SCI_LK1_AXVIEC20050110_170421_20050109_113235_20050116_131238 SCI_LK1_AXVIEC20050110_170903_20050109_131119_20050116_145147 SCI_LK1_AXVIEC20050110_171652_20050109_144937_20050116_163035 SCI_LK1_AXVIEC20050111_062854_20050109_162820_20050116_180433 SCI_LK1_AXVIEC20050111_040141_20050109_180313_20050116_194350 SCI_LK1-AXVIEC20050111-024049-20050109-205226-20050116_223826 SCI_LK1-AXVIEC20050111-044933_20050109-224416_20050117_001849 SCI_LK1_AXVIEC20050111_061929_-20050110_015616_20050117_031135 SCI_LK1-AXVIEC20050111-062632_20050110-031055-20050117-045424 SCI_LK1_AXVIEC20050112_011811_20050110_045348_20050117_063512 SCI_LK1_AXVIEC20050111_041956_20050110_063411_20050117_074211 SCI_LK1_AXVIEC20050111_051122_20050110_092115_20050117_110231 SCI_LK1_AXVIEC20050111_054002_20050110_110055_20050117_124353 SCI_LK1_AXVIEC20050111_063100_20050110_124227_20050117_142230 SCI_LK1_AXVIEC20050111_063231_20050110_142111_20050117_160036 SCI_LK1_AXVIEC20050111_062126_20050110_155833_20050117_173807 SCI_LK1_AXVIEC20050112_061251_20050110_173620_20050117_191330 SCI_LK1_AXVIEC20050112_032057_20050110_191600_20050117_205737 SCI_LK1_AXVIEC20050112_014924_20050110_220541_20050117_234709 SCI_LK1_AXVIEC20050112_031646_20050111_012544_20050118_024039 SCI_LK1_AXVIEC20050112_052204_20050111_023915_20050118_042238 SCI_LK1-AXVIEC20050112_062521-20050111-060230_20050118-071119 SCI_LK1_AXVIEC20050112_062914_20050111_071008_20050118_085310 SCI_LK1_AXVIEC20050112_063244_20050111_085031_20050118_103106 SCI_LK1_AXVIEC20050112_063612_20050111_120950_20050118_135010 SCI_LK1_AXVIEC20050112_064019_20050111_134930_20050118_152924 SCI_LK1_AXVIEC20050112_065205_20050111_152652_20050118_170745 SCI_LK1_AXVIEC20050112_053011_20050111_170631_20050118_184151 SCI_LK1_AXVIEC20050113_150523_20050111_184027_20050118_202227 SCI_LK1_AXVIEC20050113_125926_20050111_213428_20050118_231528 SCI_LK1_AXVIEC20050113_181308_20050112_010210_20050119_035056 SCI_LK1_AXVIEC20050114_141334_20050112_053050_20050119_071250 SCI_LK1_AXVIEC20050114_025350_20050112_081850_20050119_100122 SCI_LK1-AXVIEC20050114-034838-20050112-095939-20050119-113856 SCI_LK1_AXVIEC20050114_041438_20050112_113714_20050119_132039 SCI_LK1_AXVIEC20050114_044916_20050112_131941_20050119_145858 SCI_LK1_AXVIEC20050114_045446_20050112_163450_20050119_181012 SCI_LK1_AXVIEC20050114_051436_20050112_180931_20050119_195047 SCI_LK1_AXVIEC20050114_052717_20050113_063958_20050120_074940

SCI_LK1_AXVIEC20050114_054646_20050113_074818_20050120_093054
SCI_LK1_AXVIEC20050114_055851_20050113_092854_20050120_110824
SCI_LK1_AXVIEC20050114_063230_20050113_124705_20050120_142718
SCI_LK1_AXVIEC20050114_064600_20050113_152623_20050120_160455
SCI_LK1_AXVIEC20050114_-065714_20050113_160407_20050120_-174300
SCI_LK1_AXVIEC20050115_035554_20050113_204206_20050120_205924
SCI_LK1_AXVIEC20050115_-020051_20050113_221103_20050120_-235256
SCI_LK1_AXVIEC20050115_023739_20050114_013214_20050121_024614
SCI_LK1_AXVIEC20050115_025917_20050114_024501_20050121_042818 SCI_LK1_AXVIEC20050115_045835_20050114_085713_20050121_103804 SCI_LK1_AXVIEC20050115_054743_20050114_125448_20050121_135636 SCI_LK1_AXVIEC20050115_060456_20050114_143307_20050121_153301 SCI_LK1_AXVIEC20050118_130923_20050114_163421_20050121_171205 SCI_LK1_AXVIEC20050118_104301_20050114_170917_20050121_184729 SCI_LK1_AXVIEC20050118_085102_20050114_184609_20050121_202804 SCI_LK1_AXVIEC20050118_111144_20050115_053528_20050122_071811 SCI_LK1_AXVIEC20050118_115036_20050115_071712_20050122_082508 SCI_LK1_AXVIEC20050118_113748_20050115_090252_20050122_100702 SCI_LK1_AXVIEC20050118_132652_20050115_100512_20050122_112822 SCI_LK1_AXVIEC20050118_-131650_20050115_114343_20050122_-132459 SCI_LK1_AXVIEC20050118_-130901_20050115_132323_20050122_150409 SCI_LK1_AXVIEC20050118_125807_20050115_150303_20050122_162513 SCI_LK1_AXVIEC20050118_124735_20050115_163736_20050122_180333 SCI_LK1_AXVIEC20050118_123725_20050115_181341_20050122_195625 SCI_LK1_AXVIEC20050118_103228_20050115_210238_20050122_224921 SCI_LK1_AXVIEC20050118_141600_20050116_002905_20050123_020913 SCI_LK1_AXVIEC20050118_140924_20050116_020711_20050123_032250 SCI_LK1_AXVIEC20050118_140320_20050116_032215_20050123_050553 SCI_LK1_AXVIEC20050118_181433_20050116_064422_20050123_075322 SCI_LK1_AXVIEC20050118_180518_20050116_080918_20050123_093549 SCI_LK1_AXVIEC20050118_-150110_20050116_131118_-20050123_-143319 SCI_LK1_AXVIEC20050118_144920_20050116_153304_20050123_161143 SCI_LK1_AXVIEC20050118_-144400_20050116_160940_20050123_173405 SCI_LK1_AXVIEC20050118_-143859_20050116_174631_20050123_192445 SCI_LK1_AXVIEC20050118_143357_20050116_192325_20050123_210842 SCI_LK1_AXVIEC20050118_185011_20050117_000428_20050124_013833 SCI_LK1_AXVIEC20050118_184504_20050117_013638_20050124_025229 SCI_LK1_AXVIEC20050118_184029_20050117_025130_20050124_043417 SCI_LK1_AXVIEC20050118_183541_20050117_043301_20050124_061529 SCI_LK1_AXVIEC20050118_162227_20050117_061445_20050124_065311 SCI_LK1_AXVIEC20050118_161155_20050117_072102_20050124_090511 SCI_LK1_AXVIEC20050118_155155_20050117_112246_20050124_122325 SCI_LK1_AXVIEC20050118_-154147_20050117_134457_20050124_-140138 SCI_LK1_AXVIEC20050121_-084944_20050117_150123_20050124_-154004 SCI_LK1_AXVIEC20050121_-082305_20050117_155639_20050124_-171853 SCI_LK1_AXVIEC20050118_-153312_20050117_173359_20050124_-185641 SCI_LK1_AXVIEC20050121_-101840_20050117_193345_20050124_203341 SCI_LK1_AXVIEC20050118_182046_20050117_233248_20050125_010710 SCI_LK1_AXVIEC20050120_183842_20050118_040228_20050125_054338 SCI_LK1_AXVIEC20050120_184929_20050118_054304_20050125_072555 SCI_LK1_AXVIEC20050120_171502_20050118_072436_20050125_082930

SCI_LK1_AXVIEC20050121_102653_20050118_082804_20050125_101341 SCI_LK1_AXVIEC20050120_181215_20050118_102911_20050125_040315 SCI_LK1_AXVIEC20050121_092652_20050118_115011_20050125_132932 SCI_LK1_AXVIEC20050121_104039_20050118_182344_20050125_200525 SCI_LK1_AXVIEC20050121-075449-20050118_230108_20050126_003529 SCI_LK1_AXVIEC20050121_080339_20050119_004144_20050126_021526 SCI_LK1_AXVIEC20050121-082554_20050119-021404_20050126_032951 SCI_LK1-AXVIEC20050121-083827-20050119-032843-20050126-051212 SCI_LK1_AXVIEC20050121_084502_20050119_051123_20050126_065213 SCI_LK1_AXVIEC20050121_104752_20050119_065050_20050126_080003 SCI_LK1_AXVIEC20050121_103542_20050119_075827_20050126_094153 SCI_LK1_AXVIEC20050121_093017_20050119_094055_20050126_112051 SCI_LK1_AXVIEC20050121_070623_20050119_111938_20050126_130030 SCI_LK1_AXVIEC20050121_111651_20050119_125905_20050126_143846 SCI_LK1_AXVIEC20050121_132508_20050119_143653_20050126_161444 SCI_LK1_AXVIEC20050121_091614_20050119_222220_20050127_000347 SCI_LK1_AXVIEC20050121_022748_20050120_014114_20050127_025745 SCI_LK1_AXVIEC20050121_035642_20050120_025701_20050127_043911 SCI_LK1_AXVIEC20050121_071738_20050120_043737_20050127_062034 SCI_LK1_AXVIEC20050121_153526_20050120_061908_20050127_072710 SCI_LK1-AXVIEC20050121-101119-20050120-072537-20050127-090841 SCI_LK1_AXVIEC20050121_152923_20050120_090709_20050127_104834 SCI_LK1_AXVIEC20050121_151211_20050120_104648_20050127_122705 SCI_LK1_AXVIEC20050121_150658_20050120_122532_20050127_140749 SCI_LK1_AXVIEC20050121_145744_20050120_140608_20050127_154447 SCI_LK1_AXVIEC20050121_144259_20050120_154329_20050127_172234 SCI_LK1_AXVIEC20050121_162204_20050120_185632_20050127_204134 SCI_LK1_AXVIEC20050121_141217_20050120_214929_20050127_233319 SCI_LK1_AXVIEC20050121_160343_20050121_054727_20050128_065716 SCI_LK1_AXVIEC20050121_155402_20050121_065451_20050128_083712 SCI_LK1_AXVIEC20050121_154642_20050121_083527_20050128_101832 SCI_LK1_AXVIEC20050125_124819_20050121_165223_20050128_183001 SCI_LK1_AXVIEC20050125_184459_-20050121_182915_20050128_201058 SCI_LK1-AXVIEC20050125_225813_-20050122-080345-20050129-094601 SCI_LK1_AXVIEC20050129_011132_20050122_094421_20050205_112536 SCI_LK1_AXVIEC20050126_232037_20050122_161849_20050205_175946 SCI_LK1_AXVIEC20050126_233009_20050122_175829_20050205_193439 SCI_LK1_AXVIEC20050127_101829_20050123_014800_20050206_030306 SCI_LK1_AXVIEC20050127_130339_20050123_044403_20050206_062528 SCI_LK1_AXVIEC20050127_153058_20050123_062438_20050206_073321 SCI_LK1_AXVIEC20050127_151349_20050123_073203_20050206_091458 SCI_LK1_AXVIEC20050127_150309_20050123_091347_20050206_105552 SCI_LK1_AXVIEC20050127_161531_20050123_105423_20050206_123431 SCI_LK1_AXVIEC20050127-161014_-20050123_-123254_20050206_141351 SCI_LK1_AXVIEC20050127_160319_20050123_141234_20050206_155014 SCI_LK1_AXVIEC20050127_155804_-20050123_160727_20050206_172959 SCI_LK1_AXVIEC20050127_155237_20050123-172838_20050206_190318 SCI_LK1_AXVIEC20050127_154654_20050123_190249_20050206_204814 SCI_LK1_AXVIEC20050127_143447_20050123_220320_20050206_233700 SCI_LK1_AXVIEC20050127_132628_20050123_234356_20050207_011707 SCI_LK1_AXVIEC20050127_175543_20050124_102132_20050207_120225

SCI_LK1_AXVIEC20050223_102609_20050222_082826_20050308_101240
SCI_LK1_AXVIEC20050224_013414_20050222_132916_20050308_151021
SCI_LK1_AXVIEC20050224_014432_20050222_164317_20050308_182455
SCI_LK1_AXVIEC20050223_094151_20050222_200140_20050308_054252
SCI_LK1-AXVIEC20050223_-110529_-20050222_-211706_20050308_-225032
SCI_LK1_AXVIEC20050223_110943_20050223_003900_20050309_021124
SCI_LK1-AXVIEC20050225-024118_20050223-051046-20050309-065145
SCI_LK1-AXVIEC20050224-023241-20050223-075751-20050309_094011 SCI_LK1-AXVIEC20050224-020519-20050223-065026-20050309-075942 SCI_LK1_AXVIEC20050224_025926_20050223_111753_20050309_125837 SCI_LK1_AXVIEC20050224_024205_20050223_093826_20050309_111944 SCI_LK1_AXVIEC20050224_034215_20050223_140259_20050309_142136 SCI_LK1_AXVIEC20050224_033156_20050223_125732_20050309_143839 SCI_LK1_AXVIEC20050224_035355_20050223_143659_20050309_161340 SCI_LK1_AXVIEC20050224_040011_20050223_161133_20050309_175214 SCI_LK1_AXVIEC20050225_055652_20050223_222556_20050310_000229 SCI_LK1_AXVIEC20050225_040921_20050223_175016_20050309_193129 SCI_LK1_AXVIEC20050225_055906_20050224_014707_20050310_025710 SCI_LK1_AXVIEC20050225_040528_20050224_043807_20050310_061953 SCI_LK1_AXVIEC20050225_060059_20050224_072607_20050310_072730 SCI_LK1-AXVIEC20050225-044819-20050224-090847-20050310-104748 SCI_LK1_AXVIEC20050225_050950_20050224_122549_20050310_140605 SCI_LK1_AXVIEC20050225_060125_20050224_072607_20050310_091008 SCI_LK1_AXVIEC20050225_060331_20050224_140420_20050310_154543 SCI_LK1_AXVIEC20050225_052816_20050224_154303_20050310_172300 SCI_LK1_AXVIEC20050226_012443_20050224_215412_20050310_232825 SCI_LK1_AXVIEC20050226_033918_20050224_172025_20050310_185916 SCI_LK1_AXVIEC20050227_015753_20050225_040732_20050311_054823 SCI_LK1_AXVIEC20050226_041301_20050225_083759_20050311_065728 SCI_LK1_AXVIEC20050226_041301_20050225_083759_20050311_101648 SCI_LK1_AXVIEC20050226_041536_20050225_115501_20050311_133458 SCI_LK1_AXVIEC20050226_034511_20050225_133344_20050311_151439 SCI_LK1_AXVIEC20050226_035043_20050225_151311_20050311_165245 SCI_LK1_AXVIEC20050227_025704_20050225_212227_20050311_230322 SCI_LK1_AXVIEC20050227_034653_20050225_164841_20050312_051703 SCI_LK1_AXVIEC20050227_034912_20050226_094350_20050311_183004 SCI_LK1_AXVIEC20050227_035030_20050226_112317_20050312_080542 SCI_LK1_AXVIEC20050227_035133_20050226_140820_20050312_112453 SCI_LK1_AXVIEC20050227_035405_20050226_144223_20050312_162026 SCI_LK1_AXVIEC20050228_011223_20050226_204358_20050312_223134 SCI_LK1_AXVIEC20050228_012227_20050227_001153_20050313_014608 SCI_LK1_AXVIEC20050228_013908_20050227_025955_20050313_044224 SCI_LK1_AXVIEC20050301_-012347_20050227_234008_20050314_011424 SCI_LK1_AXVIEC20050301-013718_20050228_023112_20050314_041321 SCI_LK1_AXVIEC20050301_014750_20050228_070152_20050314_084454 SCI_LK1_AXVIEC20050301-015753_20050228_084336_20050314_102432 SCI_LK1_AXVIEC20050301-_020543_20050228_102303_20050314_120236 SCI_LK1_AXVIEC20050301_021314_20050228_120133_20050314_134122 SCI_LK1_AXVIEC20050301_021906_20050228_134004_20050314_151955 SCI_LK1_AXVIEC20050302_012702_20050228_151835_20050314_165749 SCI_LK1_AXVIEC20050302_013728_20050228_165623_20050314_183516

SCI_LK1_AXVIEC20050310_011747_20050308_050148_20050322_064344
SCI_LK1_AXVIEC20050309-022539_-20050308_064223_20050322_075134
SCI_LK1_AXVIEC20050309_024934_20050308_074948_20050322_093336
SCI_LK1_AXVIEC20050309_024554_20050308_093228_20050321_195521
SCI_LK1-AXVIEC20050309-_025611-20050308_111059_20050322_-125059
SCI_LK1_AXVIEC20050309_030442_20050308_124930_20050322_142803
SCI-LK1-AXVIEC20050309-031344_-20050308-142556-20050322_160648
SCI_LK1_AXVIEC20050310_022522_-20050308_174405_20050322_192310 SCI_LK1_AXVIEC20050310_013602_20050308_221616_20050322_235627 SCI_LK1_AXVIEC20050310_031330_20050309_061135_20050323_072108 SCI_LK1_AXVIEC20050310_033253_20050309_104024_20050323_122102 SCI_LK1_AXVIEC20050310_031923_20050309_121842_20050323_135845 SCI_LK1_AXVIEC20050311_014941_20050309_171339_20050323_185219 SCI_LK1_AXVIEC20050311_011924_20050309_214431_20050323_232619 SCI_LK1_AXVIEC20050311_014130_20050310_035929_20050324_054056 SCI_LK1_AXVIEC20050311_031944_20050310_072040_20050324_082754 SCI_LK1_AXVIEC20050311_034353_20050310_082547_20050324_100936 SCI_LK1_AXVIEC20050311-034744_20050310_100840_20050324_114932 SCI_LK1-AXVIEC20050311-041150_-20050310-132542_20050324_-150513 SCI_LK1_AXVIEC20050311-031716_20050310_150304_20050324_164252 SCI_LK1_AXVIEC20050313-031850_20050310_163834-20050324_182035 SCI_LK1_AXVIEC20050313_012543_20050310_210316_20050324_225434 SCI_LK1_AXVIEC20050313_014322_20050311_003356_20050325_020745 SCI_LK1_AXVIEC20050313_020018_20050311_032541_20050325_050828 SCI_LK1_AXVIEC20050313_033916_20050311_064748_20050325_075621 SCI_LK1_AXVIEC20050313_034759_20050311_075512_20050325_093805 SCI_LK1_AXVIEC20050313_035816_20050311_093656_20050325_111723 SCI_LK1_AXVIEC20050313_040826_20050311_111514_20050325_125709 SCI_LK1_AXVIEC20050313_043032_20050311_143216_20050325_161319 SCI_LK1_AXVIEC20050313_043944_20050311_161100_20050325_175114 SCI_LK1_AXVIEC20050313_045953_20050311_192802_20050325_210952 SCI_LK1_AXVIEC20050313_024210_20050312_000210_20050326_014221 SCI_LK1_AXVIEC20050313_050900_20050312_061604_20050326_072601 SCI_LK1_AXVIEC20050313-051758_20050312_072424-20050326_090652 SCI_LK1_AXVIEC20050313_052617_20050312_090608_20050326_104620 SCI_LK1_AXVIEC20050313_053450_20050312_104439_20050326_122519 SCI_LK1_AXVIEC20050313_054559_20050312_140237_20050326_154212 SCI_LK1_AXVIEC20050313_055242_20050312_154012_20050326_171815 SCI_LK1_AXVIEC20050315_010935_20050312_171745_20050326_185743 SCI_LK1_AXVIEC20050315_011823_20050312_185618_20050326_203738 SCI_LK1_AXVIEC20050314_174927_20050312_233025_20050327_011129 SCI_LK1_AXVIEC20050314_175653_20050313_054420_20050327_072859 SCI_LK1_AXVIEC20050315_012712_20050313_072756_20050327_083334 SCI_LK1_AXVIEC20050315_013637_20050313_083220_20050327_101551 SCI_LK1_AXVIEC20050315_014518_20050313_101500_20050327_115452 SCI_LK1_AXVIEC20050315_015355_20050313_115235_20050327_133341 SCI_LK1_AXVIEC20050315_020221_-20050313_133202_20050327_151302 SCI_LK1_AXVIEC20050315_021117_20050313_164617_20050327_182600 SCI_LK1_AXVIEC20050316_011745_20050314_051345_20050328_065506 SCI_LK1_AXVIEC20050315_022921_20050314_065408_20050328_080252 SCI_LK1_AXVIEC20050315_023813_20050314_080145_20050328_094428

SCI_LK1_AXVIEC20050315_024756_20050314_094317_20050328_112428
SCI_LK1_AXVIEC20050315_025616_20050314_112352_20050328_130257
SCI_LK1_AXVIEC20050316_022702_20050314_151922_20050328_161752
SCI_LK1_AXVIEC20050316_023806_20050314_161529_20050328_175518
SCI_LK1_AXVIEC20050316_025727_20050315_105004_20050329_123000
SCI_LK1_AXVIEC20050316_030656_20050315_122835_20050329_-141023 SCI_LK1_AXVIEC20050317_-160302_-20050315_172107_20050329_-190308 SCI_LK1_AXVIEC20050317_-121530_20050316_083636_20050330_-102106 SCI_LK1_AXVIEC20050317_-124521_20050316_115747_20050330_133848 SCI_LK1_AXVIEC20050317_125636_20050316_151558_20050330_165504 SCI_LK1_AXVIEC20050318_123048_20050316_165237_20050330_183124 SCI_LK1_AXVIEC20050318_130839_20050317_140916_20050331_144639 SCI_LK1_AXVIEC20050319_013738_20050317_161740_20050331_180250 SCI_LK1_AXVIEC20050319_021452_20050318_062653_20050401_073641 SCI_LK1_AXVIEC20050319_032707_20050318_073514_20050401_091834 SCI_LK1_AXVIEC20050319_031117_20050318_105624_20050401_123621 SCI_LK1_AXVIEC20050319_032125_20050318_123455_20050401_-141425 SCI_LK1_AXVIEC20050319_033238_20050318_141230_20050401_155345 SCI_LK1_AXVIEC20050319_034010_20050318_155101_20050401_173047 SCI_LK1_AXVIEC20050320_-022225_20050318_172833_20050401_-190936 SCI_LK1_AXVIEC20050320_023938_20050319_055605_20050402_070540 SCI_LK1_AXVIEC20050320_024914_20050319_070438_20050402_084731 SCI_LK1_AXVIEC20050320_025900_20050319_084610_20050402_102650 SCI_LK1_AXVIEC20050320_030902_20050319_102549_20050402_120533 SCI_LK1_AXVIEC20050320_031926_20050319_120420_20050402_134352 SCI_LK1_AXVIEC20050320_032733_20050319_151822_20050402_165843 SCI_LK1_AXVIEC20050321_182141_20050319_165448_20050402_183920 SCI_LK1_AXVIEC20050321_143038_20050320_052423_20050403_070603 SCI_LK1_AXVIEC20050321_152845_20050320_052627_20050403_070603 SCI_LK1_AXVIEC20050321_182550_20050320_070458_20050403_081414 SCI_LK1_AXVIEC20050321_-123659_20050320_081223_20050403_-095554 SCI_LK1_AXVIEC20050321_125446_20050320_095503_20050403_113508 SCI_LK1_AXVIEC20050321_-125822_-20050320_-113334_20050403_-131344 SCI_LK1_AXVIEC20050322_012546_20050320_162715_20050403_180904 SCI_LK1_AXVIEC20050322_-014347_20050321_063315_20050404_074240 SCI_LK1_AXVIEC20050322_015755_20050321_074148_20050404_092532 SCI_LK1_AXVIEC20050322_020828_20050321_092428_20050404_110255 SCI_LK1_AXVIEC20050322_021901_20050321_110150_20050404_124321 SCI_LK1_AXVIEC20050322_022927_20050321_124226_20050404_142233 SCI_LK1_AXVIEC20050322_024143_20050321_142057_20050404_155811 SCI_LK1_AXVIEC20050322_024910_20050321_155628_20050404_173646 SCI_LK1_AXVIEC20050323_034210_20050321_173514_20050404_191622 SCI_LK1_AXVIEC20050323_050045_20050322_060240_20050405_071235 SCI_LK1_AXVIEC20050323_-050622_20050322_071101_20050405_-085347 SCI_LK1_AXVIEC20050323_-051747_20050322_-085245_20050405_-103202 SCI_LK1_AXVIEC20050323_052312_20050322_103116_20050405_121135 SCI_LK1_AXVIEC20050324_023304_20050322_170328_20050405_184418 SCI_LK1_AXVIEC20050324_025443_20050323_071133_20050406_082004 SCI_LK1_AXVIEC20050324_030307_20050323_081857_20050406_100126 SCI_LK1_AXVIEC20050324_032052_20050323_114008_20050406_132003 SCI_LK1_AXVIEC20050324_032505_20050323_131839_20050406_145716

SCI_LK1_AXVIEC20050325_011449_20050323_195143_20050406_205627 SCI_LK1_AXVIEC20050325_031242_20050324_063841_20050407_074830 SCI_LK1_AXVIEC20050325_025025_20050324_074714_20050407_-093040 SCI_LK1_AXVIEC20050325_033022_20050324_110717_20050407_-174102 SCI_LK1_AXVIEC20050325_-032312_20050324_142527_20050407_-160238 SCI_LK1_AXVIEC20050326_-025311_20050325_060807_20050408_-071740 SCI_LK1_AXVIEC20050326_030457_20050325_071627_20050408_-085901 SCI_LK1_AXVIEC20050326_-031449_-20050325_103642_-20050408_-121658 SCI_LK1_AXVIEC20050326_032438_20050325_121609_20050408_-135536 SCI_LK1_AXVIEC20050326_033457_20050325_153215_20050408_171058 SCI_LK1_AXVIEC20050327_044639_20050325_170856_20050408_184722 SCI_LK1_AXVIEC20050327_042838_20050326_053528_20050409_071852 SCI_LK1_AXVIEC20050327_045551_20050326_082328_20050409_100653 SCI_LK1_AXVIEC20050327_051030_20050326_100555_20050409_114609 SCI_LK1_AXVIEC20050327_051755_20050326_114439_20050409_132536 SCI_LK1_AXVIEC20050329_-164545_20050326_163903_20050409_-181658 SCI_LK1_AXVIEC20050329_-171540_20050327_064516_20050410_075408 SCI_LK1_AXVIEC20050329_-172235_20050327_093412_20050410_-111423 SCI_LK1_AXVIEC20050329_-172435_20050327-111351_20050410_-125515 SCI_LK1_AXVIEC20050329_-150602_20050327_174700_20050410_-192816 SCI_LK1_AXVIEC20050329_-152812_20050328_061333_20050411_072400 SCI_LK1_AXVIEC20050329_-165825_20050328_072302_20050411_090528 SCI_LK1_AXVIEC20050329_154637_20050328_104413_20050411_122336 SCI_LK1_AXVIEC20050329_170718_20050328_122244_20050411_140239 SCI_LK1_AXVIEC20050329_160425_20050328_140115_20050411_154038 SCI_LK1_AXVIEC20050330_010816_20050329_072334_20050412_083110 SCI_LK1_AXVIEC20050330_012234_20050329_082950_20050412_101240 SCI_LK1_AXVIEC20050330_013143_20050329_101134_20050412_115157 SCI_LK1_AXVIEC20050330_013944_20050329_115101_20050412_133132 SCI_LK1_AXVIEC20050330_015106_20050329_133041_20050412_150935 SCI_LK1_AXVIEC20050331_-034323_20050330_064947_20050413_075958 SCI_LK1_AXVIEC20050331_043053_20050330_075903_20050413_142013 SCI_LK1_AXVIEC20050331_033429_20050330_-111918_20050413_-125944 SCI_LK1_AXVIEC20050331_-035050_20050330_125858_20050413_-143725 SCI_LK1_AXVIEC20050401_023139_20050330_143512_20050413_-161524 SCI_LK1_AXVIEC20050401_-030601_20050331_062008_20050414_072848 SCI_LK1_AXVIEC20050401_031446_20050331_072720_20050414_091022 SCI_LK1_AXVIEC20050401_032515_20050331_090904_20050414_104907 SCI_LK1_AXVIEC20050401_033506_20050331_104831_20050414_122855 SCI_LK1_AXVIEC20050401_034438_20050331_122811_20050414_140713 SCI_LK1_AXVIEC20050401_035016_20050331_140533_20050414_154421 SCI_LK1_AXVIEC20050404_183349_20050401_164957_20050415_182906 SCI_LK1_AXVIEC20050404_-182701_20050402_065610_20050416_080507 SCI_LK1_AXVIEC20050404_-133338_20050402_-161815_20050416_-175800 SCI_LK1_AXVIEC20050404_135105_20050403_073301_20050417_-091555 SCI_LK1_AXVIEC20050405_104924_20050403_105412_20050417_-123510 SCI_LK1_AXVIEC20050404_-131858_20050403_141114_20050417_-154810 SCI_LK1_AXVIEC20050406_-112933_20050403_154536_20050417_-172620 SCI_LK1_AXVIEC20050406_113811_20050403_172514_20050417_190743 SCI_LK1_AXVIEC20050406_121436_20050404_055245_20050418_070243 SCI_LK1_AXVIEC20050406_073949_20050404_102230_20050418_084450

SCI_LK1_AXVIEC20050406_074208_20050404_120252_20050418_134235
SCI_LK1_AXVIEC20050406_123032_20050405_070247_20050419_081143
SCI_LK1_AXVIEC20050406_123732_20050405_081108_20050419_095352
SCI_LK1_AXVIEC20050406_144547_20050405_095252_20050419_113208
SCI_LK1_AXVIEC20050406_144927_20050405_113110_20050419_131121
SCI_LK1_AXVIEC20050406_074549_20050405_131050_20050419_145037
SCI_LK1_AXVIEC20050407_-023004_-20050405_162343_20050419_-180533
SCI_LK1_AXVIEC20050407_-025134_20050406_062956_20050420_074010 SCI_LK1_AXVIEC20050407_030540_20050406_092001_20050420_-110153 SCI_LK1_AXVIEC20050407_031323_20050406_110036_20050420_124047 SCI_LK1_AXVIEC20050407_031930_20050406_124016_20050420_141931 SCI_LK1_AXVIEC20050409_051420_20050407_102854_20050421_120844 SCI_LK1_AXVIEC20050409_052213_20050407_120725_20050422_131720 SCI_LK1_AXVIEC20050409_055032_20050407_134652_20050421_152459 SCI_LK1_AXVIEC20050409_033309_20050408_052740_20050422_070829 SCI_LK1_AXVIEC20050409_065058_20050408_070707_20050422_081700 SCI_LK1_AXVIEC20050409_065733_20050408_081540_20050422_095801 SCI_LK1_AXVIEC20050409_072707_20050408_095712_20050422_113823 SCI_LK1_AXVIEC20050409_052836_20050408_131618_20050422_145355 SCI_LK1_AXVIEC20050409-073913_20050408_145149_20050422_-163248 SCI_LK1_AXVIEC20050411_-182518_20050408_163007_20050422_180925 SCI_LK1_AXVIEC20050411_184447_20050409_142211_20050423_160236 SCI_LK1_AXVIEC20050411_113035_20050409_173704_20050423_191905 SCI_LK1_AXVIEC20050411_124751_20050410_060438_20050424_071450 SCI_LK1_AXVIEC20050411_142629_20050410_085443_20050424_103519 SCI_LK1_AXVIEC20050411_143200_20050410_103423_20050424_121411 SCI_LK1_AXVIEC20050411_144346_20050410_135233_20050424_153154 SCI_LK1_AXVIEC20050411_150848_20050410_153052_20050424_170858 SCI_LK1_AXVIEC20050412_043322_20050410_170618_20050424_184744 SCI_LK1_AXVIEC20050412_051024_20050411_071344_20050425_082205 SCI_LK1_AXVIEC20050412_051917_20050411_082056_20050425_100350 SCI_LK1_AXVIEC20050412_054919_20050411_114111_20050425_132233 SCI_LK1_AXVIEC20050412_-060525_20050411_132147_20050425_150122 SCI_LK1_AXVIEC20050413_012359_20050411_163645_20050425_181336 SCI_LK1_AXVIEC20050413_014440_20050412_064202_20050426_075130 SCI_LK1_AXVIEC20050413_015639_20050412_075023_20050426_093228 SCI_LK1_AXVIEC20050413_034229_20050412_093058_20050426_111327 SCI_LK1_AXVIEC20050413_043116_20050412_111229_20050426_125203 SCI_LK1_AXVIEC20050413_050149_20050412_125113_20050426_143006 SCI_LK1_AXVIEC20050413_052718_20050412_142932_20050426_160752 SCI_LK1_AXVIEC20050413_063628_20050412_160611_20050426_174407 SCI_LK1_AXVIEC20050414_034333_20050413_061116_20050427_072026 SCI_LK1_AXVIEC20050414_035615_20050413_071936_20050427_-090220 SCI_LK1_AXVIEC20050414_035923_20050413_104047_20050427_-104139 SCI_LK1_AXVIEC20050414_040027_20050413_121931_20050427_122027 SCI_LK1_AXVIEC20050414_040303_20050413_135749_20050427-153629 SCI_LK1_AXVIEC20050415_031214_20050413_171242_20050427_-185021 SCI_LK1_AXVIEC20050415_024616_20050414_053934_20050428_072126 SCI_LK1_AXVIEC20050415_130309_20050414_072009_20050428_082751 SCI_LK1_AXVIEC20050415_140522_20050414_082638_20050428_101027 SCI_LK1_AXVIEC20050415_030329_20050414_100905_20050428_114849

```
SCI_LK1_AXVIEC20050426_011050_20050424_194258_20050508_205217
SCI_LK1_AXVIEC20050426_011740_20050424_205157_20050508_223951
SCI_LK1_AXVIEC20050426_023705_20050425_063315_20050509_074240
SCI_LK1_AXVIEC20050426_025307_20050425_074135_20050509_092452
SCI_LK1_AXVIEC20050426_034136_20050425_124226_20050509_142159
SCI LK1 \({ }^{-}\)AXVIEC20050426-034757 \(20050425^{-1} 142057^{-}\)20050509 \({ }^{-} 155930\)
SCI-LK1_AXVIEC20050427_033200_20050426_071102_20050510_085323
SCI_LK1_AXVIEC20050427-034926_20050426_093127_20050510_-103302
SCI_LK1_AXVIEC20050427_035622_20050426_103213_20050510_121219
SCI_LK1_AXVIEC20050427_040330_20050426_122828_20050510_135140
SCI_LK1_AXVIEC20050427_041131_20050426_135011_20050510_152822
SCI_LK1_AXVIEC20050428_030818_20050426_160711_20050510_170536
SCI_LK1_AXVIEC20050428_043704_20050426_180756_20050510_184420
SCI_LK1_AXVIEC20050428_034316_20050427_071123_20050511_081958
SCI_LK1_AXVIEC20050428_043030_20050427_091939_20050511_100202
SCI_LK1_AXVIEC20050429_024021_20050427_131938_20050511_145843
SCI_LK1_AXVIEC20050429_025019_20050427_163123_20050511_175817
SCI LK1_AXVIEC20050429_030534_20050428_070057_20050512_074837
SCI_LK1_AXVIEC20050429_031313_20050428_074719_20050512_093001
SCI_LK1_AXVIEC20050429_032150_20050428_112505_20050512_124913
SCI_LK1_AXVIEC20050429_032845_20050428_124757_20050512_142712
SCI_LK1_AXVIEC20050429_034203_20050428_152606_20050512_160443
SCI_LK1_AXVIEC20050429_034916_20050428_160255_20050512_172634
SCI_LK1_AXVIEC20050430_020554_20050428_182033_20050512_192206
SCI_LK1_AXVIEC20050430_022815_20050429_060800_20050513_071749
SCI_LK1_AXVIEC20050430_024508_20050429_081613_20050513_085807
SCI_LK1_AXVIEC20050430_025911_20050429_085709_20050513_103734
SCI_LK1_AXVIEC20050430_031424_20050429_111516_20050513_121659
SCI_LK1_AXVIEC20050430_033222_20050429_125431_20050513_135655
SCI_LK1_AXVIEC20050430_034450_20050429_141122_20050513_153309
SCI_LK1_AXVIEC20050501_043023_20050430_071558_20050514_081801
SCI_LK1_AXVIEC20050502_023422_20050430_092422_20050514_100625
SCI_LK1_AXVIEC20050502_-024619_20050430_104444_20050514_-114629
SCI_LK1_AXVIEC20050502_025555_20050430_114530_20050514_132551
SCI_LK1_AXVIEC20050502_030856_20050430_132509_20050514_150344
SCI_LK1_AXVIEC20050502_034328_20050430_165643_20050514_181801
```

