Aeolus L2B horizontal HLOS wind product monthly quality report

Period: For the month of July 2022 and up to 8 August 2022

By Michael Rennie (ECWMF); a member of the Aeolus DISC team

Introduction

Information on the derivation of ECMWF Aeolus Level-2B (L2B) HLOS (horizontal line-of-sight) wind monitoring statistics is available on the ESA CAL/VAL webpage (under L2B Data Quality Handbook); for those people that have access. Section 2.3 of the <u>Technical Memorandum</u> also explains how ECMWF's Aeolus observation minus background (O-B) departure statistics are calculated. ECMWF's daily updated, automatically produced statistics of L2B HLOS wind observation minus background (O-A) are available <u>here</u>.

The statistics are produced for Rayleigh-clear and Mie-cloudy winds and not for the unassimilated Rayleigh-cloudy and Mie-clear. An expert interpretation of these statistics for the past month is provided in this report, including insights into any relevant data events.

Quality Control (QC) is applied when calculating the ECMWF "all data" statistics:

- Rejection of observations with Level-2B processor estimated instrument error $(1-\sigma)$ exceeding a threshold: $\sigma_o > 12$ m/s for the Rayleigh-clear and $\sigma_o > 5$ m/s for the Miecloudy to remove outliers which were found to help the non-robust metrics (like mean and standard deviation).
- Rejection of observations if the Level-2B HLOS wind result overall confidence flag is invalid.
- Rejection of observations which fail the ECMWF model "first-guess check" i.e. reject if $0 B > 5\sqrt{\sigma_0^2 + \sigma_B^2}$ (a 5-sigma check). This is effectively a gross-error QC.

The website also has available the "used" or actively assimilated observation statistics.

Daily ECMWF data coverage plots for Aeolus are available <u>here</u>.

Other NWP monitoring websites for Aeolus L2B winds:

- <u>Météo-France</u>
- Met Office:
 - O-B statistics
 - Data timeliness

1. L2B Rayleigh-clear O-B and O-A departure statistics

Figure 1. This figure shows changes with time in the O-B and O-A departure statistics of the L2B Rayleigh-clear winds with respect to the ECMWF model. The statistics are calculated every 3 hours for the 0-400 hPa pressure range. Panel a) is for ascending and panel b) is for descending orbit phase. The top plot is the mean of departures i.e. bias; the second plot down is the standard deviation of departures and the assigned observation error in data assimilation (OBS ERROR) i.e. information on random error; the third plot down is the mean observation value and mean model equivalent and the bottom plot is the number of observations per sample.

Figure 2. Latitude-time dependence statistics for L2B Rayleigh-clear HLOS winds for the 0-400 hPa pressure range with a) mean(O-B) ascending; b) mean(O-B) descending and c) stdev(O-B) for descending orbit phase. Unit: m/s.

Figure 3. Maps of L2B Rayleigh-clear mean(O-B) for the 0-400 hPa pressure range for a) ascending and b) descending orbit phases. Unit: m/s. For the period: 1 July 2022 to 5 August 2022. These plots are only updated once per week.

Figure 4. Pressure versus latitude dependence of the L2B Rayleigh-clear mean(O-B) for a) ascending and b) descending orbits. Panel c) is the standard deviation of (O-B) for ascending orbits. Unit: m/s. For the period: 27 June to 6 August 2022.

Figure 5. Times-series of daily, global, whole profile L2B Rayleigh-clear HLOS wind related statistics since 12 May 2020 (when L2B data was made available for public release). QC for this type of plot is to reject winds if abs(O-B) > 15 m/s. Data up to 7 August 2022.

Comments and assessment of L2B Rayleigh-clear winds for this period:

- Random errors remain steady in July 2022 in the global average due to the passing of the peak solar background noise season in the Northern Hemisphere.
- Random errors are much larger north of 20-30 degrees latitude than compared to rest of the world due to the dominance of solar background noise when we have small useful signal levels.
- Quality control based on the L2Bp estimated error is rejecting most of the high-altitude data at high northern latitudes (summer) recently, so the statistics are based on small samples and unreliable up there, which comes across in the bias map plots (noisy).
- There is still a bias dipole near the equator for ascending and descending orbits at around 50 hPa, with the opposite sign. This is consistent with the ECMWF model not having enough vertical wind shear during the descending phase of the QBO easterlies something seen with other observation types in the past.
- There seems to be some banding of bias with pressure at high northern latitudes it is not known what is causing this.

2. L2B Mie-cloudy O-B and O-A departure statistics

Figure 6. Same type of plots as in Figure 1, but for L2B Mie-cloudy HLOS winds.

Figure 7. Pressure versus latitude dependence of the L2B Mie-cloudy mean(O-B) for a) ascending and b) descending orbits. Unit: m/s. For the period: 27 June to 6 August 2022.

Figure 8. Pressure versus latitude dependence of the ascending L2B Mie-cloudy a) stdev(O-B) m/s, b) assigned observation error in DA (via scaled L2Bp error estimates) and c) number of observations. For the period: 27 June to 6 August 2022.

Figure 9. Times-series of daily, global, whole profile L2B Mie-cloudy HLOS wind related statistics since 12 May 2020 (when L2B data was made available for public release). QC for this type of plot is to reject if abs(O-B) > 10 m/s. Data up to 7 August 2022.

Comments and assessment on L2B Mie-cloudy winds for this period:

- Random errors are July 2022 perhaps have a very small increasing trend.
- The Hunga Tonga-Hunga Ha'apai volcano eruption plume (eruption on 15 January 2022) Miecloudy winds are clearly reducing in the number passing Quality Control. But, there is still a peak around 32 hPa at ~-20 degrees latitude.
- There is still a good sample of decent quality PSC Mie-cloudy winds over Antarctica.

3. L2B HLOS wind Forecast Sensitivity Observation Impact (FSOI) statistics from ECMWF's operational data assimilation

Figure 10. Time-series of the negative of the FSOI of Aeolus L2B HLOS winds in ECMWF operations since the L2B data public release (12 May 2020) until 4 August 2022. Therefore, positive values of -FSOI indicate short-range forecast improvement due to assimilating Aeolus. Partitioned into Mie-cloudy (blue), Rayleigh-clear (red) and combined (green). This metric is based on a global dry energy norm. A 2-week rolling average was applied, and periods with reduced data counts, due to special operations were removed from this averaging

The short-range forecast impact of Aeolus HLOS winds remains positive in July 2022 according to the ECMWF FSOI metric. Note that the maximum impact of Aeolus with this FSOI metric was found to be roughly 16250 units in the early FM-B laser period with the largest signal levels of the mission (offline, reprocessed dataset testing). The June 2022 impact of ~7750 units is ~47% of the maximum impact. The impact has remained reasonably steady in the past few months.